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Abstract

We initiate the study of the truthfulness of calibration measures in sequential prediction.
A calibration measure is said to be truthful if the forecaster (approximately) minimizes the
expected penalty by predicting the conditional expectation of the next outcome, given the prior
distribution of outcomes. Truthfulness is an important property of calibration measures, ensuring
that the forecaster is not incentivized to exploit the system with deliberate poor forecasts. This
makes it an essential desideratum for calibration measures, alongside typical requirements, such
as soundness and completeness.

We conduct a taxonomy of existing calibration measures and their truthfulness. Perhaps
surprisingly, we find that all of them are far from being truthful. That is, under existing calibration
measures, there are simple distributions on which a polylogarithmic (or even zero) penalty is
achievable, while truthful prediction leads to a polynomial penalty. Our main contribution is
the introduction of a new calibration measure termed the Subsampled Smooth Calibration Error
(SSCE) under which truthful prediction is optimal up to a constant multiplicative factor.

1 Introduction

Probability forecasting is a central prediction task to a wide range of domains and applications, such
as finance, meteorology, and medicine [MW84, DF83, WM68, JOKOM12, KSB21, VCV15, BF+02,
CAT16]. For forecasts to be useful, a common minimum requirement is that they are calibrated, i.e.,
the predictions are unbiased conditioned on the predicted value. Formally, for a sequence of T binary
events, a forecaster who predicts probabilities in [0, 1] is perfectly calibrated if for every α ∈ [0, 1],
among the time steps on which α is predicted, an α fraction of the outcomes is indeed 1. Since
perfectly calibrated forecasts are often unachievable, calibration measures have been introduced to
quantify some form of deviation from perfectly calibrated forecasts. Common examples of these
measures include the expected calibration error (ECE) [FV98], the smooth calibration error [KF08],
and the distance from calibration [BGHN23].

As these calibration measures are commonly used to evaluate the performance of forecasters, it
is important that their use encourages forecasters to incorporate the highest quality information
available to them (e.g., via their expert knowledge or side information) about the next outcome. This
desideratum, formally referred to as truthfulness, requires that a calibration measure incentivizes the
forecasters to predict truthfully when the true distribution of the next outcome is known to them.
Lack of truthfulness can have severe consequences: it serves as a poor measure of quality of forecasts,
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tempts forecasters to make deliberately biased predictions in order to game the system, and erodes
trust in predictions provided by third-party forecasters. Given the importance of truthfulness, we set
out to identify calibration measures that demonstrate truthfulness.

While truthfulness of calibration measures has not been systematically investigated to date,
evidence of the lack of truthfulness of some calibration measures has emerged in recent literature
(e.g., [FH21, QV21]). More recently, [QZ24] highlighted a large gap in the truthfulness of a recently
proposed calibration measure (called the distance from calibration [BGHN23]) by showing that in a
simple setup of predicting i.i.d. outcomes, the truthful forecaster incurs a distance of Ω(

√
T ) from

calibration but there is a forecasting algorithm that achieves polylog(T ) distance from calibration.
We call this a polylog(T )-Ω(

√
T ) truthfulness gap. On the other hand, we say that a calibration

measure is (α, β)-truthful if predicting the next outcome according to its conditional distribution
incurs a measure that is no more than αOPT+β, where OPT is the minimum value of the calibration
measure achievable by any forecaster. Faced with evidence that some calibration measures suffer
from large truthfulness gaps, we will systematically examine the truthfulness (or a gap thereof) of a
wide range of calibration measures.

For a truthful calibration measure to also be useful it must distinguish accurate predictions from
inaccurate ones. After all, a measure that is uniformly 0 regardless of the quality of predictions is
perfectly truthful (formally (1, 0)-truthful) but provides no insights into the quality of the predictions.
We formalize the minimum requirement for a measure to be useful by its completeness and soundness
when predicting i.i.d. Bernoulli outcomes. The former requires that predicting the outcomes according
to the correct parameter of the generating Bernoulli distribution incurs no or o(T ) penalty, whereas
the latter requires the penalty to be Ω(T ) when predictions systematically deviate from the correct
parameter. An equally important feature of a calibration measure is that it defines an ideal that
could be asymptotically achieved for all prediction tasks. This is formalized by the existence of
forecasting algorithms with an o(T ) penalty in the adversarial sequential prediction setting [FV98],
where the sequence of outcomes is produced by an adaptive adversary.

With these desiderata in place (namely truthfulness, soundness, completeness, and asymptotic
calibration), we ask whether there are calibration measures that simultaneously satisfy all these
criteria? We answer this question in three parts:

Part I: We show that existing calibration measures do not simultaneously meet these
criteria. We conduct a taxonomy of several existing calibration measures in terms of their
completeness, soundness and truthfulness (formally defined in Section 2). We show that almost all
of them have large truthfulness gaps : There are simple distributions on which an O(1) (or even zero)
penalty is achievable, while truthful predictions lead to a poly(T ) penalty; see Table 1 for details.

Indeed, this lack of truthfulness is not limited to specific or contrived distributions. In the
next theorem which we will prove in Appendix B, we strengthen these findings by showing that a
commonly used notion of calibration systematically suffers large truthfulness gaps in most forecasting
instances.

Theorem 1.1 (Informal). For every product distribution with marginals bounded away from 0 and 1,
the truthful forecaster incurs Ω(

√
T ) smooth calibration error but there exists a forecasting algorithm

that incurs only polylog(T ) smooth calibration error.

A notable exception in Table 1 is the class of calibration measures induced by proper scoring
rules, i.e., loss functions for probabilistic predictions that are optimized by truthful forecasts. By
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Calibration Measure Complete? Sound? Truthful?

Expected Calibration Error, Maximum Swap Regret ✓ ✓ 0-Ω(T ) gap

Smooth Calibration, Distance from Calibration,
Interval Calibration, Laplace-Kernel Calibration ✓ ✓ 0-Ω(

√
T ) gap

U-Calibration Error ✓ ✓ O(1)-Ω(
√
T ) gap

Proper Scoring Rules × ✓ (1, 0)-truthful

Subsampled Smooth Calibration Error ✓ ✓ (O(1), 0)-truthful

Table 1: Evaluation of existing calibration measures along with SSCE, in terms of completeness,
soundness and truthfulness (Definitions 2.2 and 2.5). An α-β truthfulness gap means that there
is a prediction instance on which forecasting according to the true conditional distribution of the
next outcome incurs more than β penalty, but there is a forecasting strategy that incurs at most α
penalty. See Appendix A for more details.

definition, these calibration measures are (1, 0)-truthful. However, none of them is complete: as we
show in Appendix A, even on i.i.d. Bernoulli trials, the optimal and truthful predictions incur an
Ω(T ) penalty.

Part II: We introduce a new calibration measure, called SSCE, that is sound, complete,
and approximately truthful. We do this using an embarrassingly simple adjustment to an
existing notion of calibration measure: we subsample a subset of the time steps and evaluate the
smooth calibration error [KF08] on this sampled set only. We call this the Subsampled Smooth
Calibration Error (SSCE) and formally define it in Section 2. Our main result is that SSCE is
(O(1), 0)-truthful.

Theorem 1.2 (Main Theorem). There exists a universal constant c > 0 such that the SSCE is
(c, 0)-truthful. Furthermore, the SSCE is complete and sound.

As shown in Table 1, to the best of our knowledge, SSCE is the first calibration measure that
simultaneously achieves completeness, soundness, and non-trivial truthfulness.

While our methodology for constructing this calibration measure is simple, the analytical steps
required to establish the (O(1), 0)-truthfulness guarantee are far from simple. We dedicate most of
the main body of this paper to illustrating the proof ideas in a series of warmups to Theorem 1.2.

Part III: There is a forecasting algorithm that achieves O(
√
T ) SSCE even in the

adversarial setting. While our study of truthfulness of calibration measures is necessarily focused
on when the forecaster knows the conditional distribution of the next outcome, it is important to
ensure that, even in the adversarial setting, a sublinear penalty can be achieved for this calibration
measure. For this, we study the sequential calibration setting (e.g., [FV98]) where the outcome at
time t is chosen by an adaptive adversary who has observed the sequence of earlier outcomes and
predictions. We show that an O(

√
T ) SSCE is achievable.
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Theorem 1.3. In the adversarial sequential calibration setting, there is a deterministic strategy for
the forecaster that achieves an O(

√
T ) SSCE.

An interesting and important feature of this result is that it achieves an O(
√
T ) rate whereas an

O(
√
T ) rate for the expected calibration error is known to be impossible to achieve [QV21]. Together

our Theorems 1.2 and 1.3 establish that SSCE is a truthful and useful calibration measure.

1.1 Related Work

There is a large body of work on calibration, a notion that dates back to the 1950s [Bri50, Daw82,
Daw85] and has been applied to game theory [FV97], machine learning [GPSW17], and algorithmic
fairness [KMR17, PRW+17, HJKRR18]. We will restrict our discussion to sequential calibration
and the systematic study of calibration measures, which are the closest to this work.

Sequential calibration. Foster and Vohra [FV98] first proved that one can achieve asymptotic
calibration on arbitrary and adaptive outcomes. Formally, they gave a forecasting algorithm with an
O(T 2/3) ECE in expectation, when predicting T binary outcomes chosen by an adaptive adversary.
Subsequent work gave alternative and simpler proofs of the result [FL99, Fos99, Har22], extended
the result to other calibration measures [KF08, FH18, FH21, QZ24], and proved lower bounds on
the optimal ECE [QV21, DDF+24]. Most closely related to our approach is the work of [FRST11],
who studied a stronger notion that requires calibration on a family of checking rules, where each
checking rule specifies a subset of the time horizon. Despite the apparent similarity, their notion is
qualitatively different from the SSCE, since we take an expectation over the subsampled horizon,
whereas they take the maximum. In particular, no forecaster can be calibrated in their definition if
the checking rule family contains all subsets of [T ], since there always exists a checking rule that
strongly correlates with the outcomes.

Calibration measures. The recent work of Błasiok, Gopalan, Hu and Nakkiran [BGHN23]
initiated the rigorous study of calibration measures. Their work focused on the offline setup, where
there is a known marginal distribution over the feature space, and each predictor maps the feature
space to [0, 1]. They proposed to use the distance from calibration—the ℓ1 distance from the predictor
to the closest predictor that is perfectly calibrated—as the ground truth, and studied whether existing
calibration measures are consistent with it. Note that completeness and soundness are defined
differently in [BGHN23]: a calibration measure is called complete (resp., sound) if it is upper (resp.,
lower) bounded by a polynomial of the distance from calibration. Since the distance from calibration
is far from being truthful in the online setup (as shown by [QZ24]), our definition of completeness
and soundness set up minimal conditions for an error metric to be regarded as measuring calibration,
rather than enforcing closeness to the distance from calibration.

Subsampling. Our new calibration measure is derived from subsampling the time horizon. This
simple idea has been shown to be effective in various different contexts, including privacy amplification
in differential privacy (e.g.,[Ste22, Section 6]), handling adversarial corruptions [BLMT22], as well
as adaptive data analysis [Bla23].

Proper scoring rules. Proper scoring rules [WM68] are error metrics for probabilistic forecasts
that are optimized when the forecaster predicts according to the true distribution. While the
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error metrics induced by proper scoring rules are (perfectly) truthful by definition, as we show in
Appendix A, they are qualitatively different from the usual calibration measures and, in particular,
do not meet the completeness criterion. We note that a recent line of work [CY21, NNW21, LHSW22,
PW22, HSLW23] studied the optimization of scoring rules, namely, finding the proper scoring rule
that maximally incentivizes the forecaster to exert effort to obtain additional information.

2 Preliminaries

Sequential prediction. We consider the following prediction setup: First, a sequence x ∈ {0, 1}T
is sampled from distribution D. At each step t ∈ [T ], the forecaster makes a prediction pt ∈ [0, 1],
after which xt is revealed. Formally, a deterministic forecaster is a function A :

⋃T
t=1{0, 1}t−1 → [0, 1],

where A(b1, b2, . . . , bt−1) specifies the forecaster’s prediction at step t if the first t− 1 observations
match b1:(t−1). Distribution D and forecaster A naturally induce a joint distribution of (x, p) ∈
{0, 1}T × [0, 1]T via sampling x ∼ D and predicting pt = A(x1, x2, . . . , xt−1).

Note that we could have defined the forecaster as a function of both the outcomes x1:(t−1) and
the predictions p1:(t−1) in the past. This alternative definition is equivalent to ours, since p1:(t−1)

would be uniquely determined by x1:(t−1). We could also have considered randomized forecasters,
which are specified by distributions over deterministic forecasters. However, as we will see later,
restricting our attention to deterministic forecasters does not affect the subsequent definitions.

Calibration measures. The quality of the forecaster’s predictions in the setting above is quantified
by calibration measures. Formally, a calibration measure CM is a family of functions {CMT : T ∈ N},
where each CMT maps {0, 1}T × [0, 1]T to [0, T ]. We will frequently omit the subscript T , since it
is usually clear from the context. With respect to calibration measure CM, the expected penalty
incurred by forecaster A on distribution D is defined as errCM(D,A) := E(x,p)∼(D,A) [CM(x, p)], where
(x, p) ∼ (D,A) denotes sampling a sequence x and predictions p from the joint distribution induced
by D and A.

One example of calibration measures is the smooth calibration error introduced by [KF08] that is
defined as smCE(x, p) := supf∈F

∑T
t=1 f(pt)(xt − pt), where F is the family of 1-Lipschitz functions

from [0, 1] to [−1, 1]. In this work, we introduce a new calibration measure called Subsampled Smooth
Calibration Error (SSCE) that is defined by subsampling a subset of the time horizon, and evaluating
the smooth calibration error on it. We will formally define this measure next. In the following,
Unif(S) denotes the uniform distribution over a finite set S. For a T -dimensional vector x and
S ⊆ [T ], x|S denotes the |S|-dimensional vector formed by the entries of x indexed by S.

Definition 2.1 (Subsampled Smooth Calibration Error). For a sequence of outcomes x ∈ {0, 1}T
and predictions p ∈ [0, 1]T , the Subsampled Smooth Calibration Error (SSCE) is defined as

SSCE(x, p) := E
S∼Unif(2[T ])

[smCE(x|S , p|S)] = E
y∼Unif({0,1}T )

[
sup
f∈F

T∑
t=1

yt · f(pt) · (xt − pt)

]
.

Completeness and soundness. We give minimal conditions for a calibration measure to be
regarded as complete (intuitively “accurate” predictions have a small penalty) and sound (intuitively
“inaccurate” predictions have a large penalty).
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Definition 2.2 (Completeness and soundness). A calibration measure CM is complete if: (1) For any
x ∈ {0, 1}T , CMT (x, x) = 0; (2) For any α ∈ [0, 1], Ex1,...,xT∼Bernoulli(α)

[
CMT (x, α · 1⃗T )

]
= oα(T ).

The calibration measure is sound if: (1) For any x ∈ {0, 1}T , CMT (x, 1⃗T − x) = Ω(T ); (2) For
any α, β ∈ [0, 1] such that α ̸= β, Ex1,...,xT∼Bernoulli(α)

[
CMT (x, β · 1⃗T )

]
= Ωα,β(T ). Here, oα(·) and

Ωα,β(·) may hide constant factors that depend on the parameters in the subscript.

Truthfulness. To define the truthfulness of a calibration measure, we introduce the truthful
forecaster and the optimal error for a distribution D.

Definition 2.3 (Truthful forecaster). With respect to distribution D ∈ ∆({0, 1}T ), the truthful
forecaster is defined as Atruthful(D)(b1, b2, . . . , bt−1) := Prx∼D

[
xt = 1

∣∣∣ x1:(t−1) = b1:(t−1)

]
.

Arguably, Atruthful(D) is the only forecaster that makes the “right” predictions on distribution D.

Definition 2.4 (Optimal error). The optimal error on distribution D ∈ ∆({0, 1}T ) with respect
to calibration measure CM is defined as OPTCM(D) := infA errCM(D,A), where A ranges over all
deterministic forecasters.

Note that by an averaging argument, the definition of OPTCM(D) is unchanged if we take an
infimum over randomized forecasters.

A calibration measure is truthful if, on every distribution, the truthful forecaster is near-optimal.

Definition 2.5 (Truthfulness of calibration measures). A calibration measure CM is (α, β)-truthful if,
for every D ∈ ∆({0, 1}T ), errCM(D,Atruthful(D)) ≤ α·OPTCM(D)+β. Conversely, CM is said to have
an α-β truthfulness gap if, for some distribution D, OPTCM(D) ≤ α and errCM(D,Atruthful(D)) ≥ β.

3 Technical Overview

In this section, we briefly discuss the main technical ideas and challenges behind the proofs of
Theorems 1.1 and 1.2. We provide more details on our main result, i.e., that SSCE is (O(1), 0)-
truthful, in Sections 4 through 6. Theorem 1.3, which we prove in Section 7.1, follows from a recent
result of [ACRS24] on minimizing the distance from calibration in the adversarial setup, along with
a new result connecting the SSCE to the distance from calibration. We defer the proof of Theorem
1.1 to Appendix B.

A simple distribution that witnesses truthfulness gaps. Inspired by [QV21, Example 2],
we consider the distribution D specified as follows: The time horizon is divided into T/3 blocks of
length 3, each with a uniformly random bit, followed by a zero and a one. Within each block, the
truthful forecaster predicts 1/2, 0 and 1 in order. Then, among the steps on which 1/2 is predicted,
the frequency of ones is typically 1/2±Θ(1/

√
T ). This deviation results in a Θ(

√
T ) penalty under

most calibration measures (concretely, all calibration measures in the first two rows of Table 1).
However, there is a different strategy that ensures perfect calibration, and thus a zero penalty

under most calibration measures. Within each block, the forecaster predicts 1/2 on the first step.
If the bit turns out to be 1, the forecaster maintains perfect calibration by predicting 1/2 on the
second step, on which the outcome is known to be 0; otherwise, the forecaster accomplishes the same
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by predicting 1/2 on the third step. Therefore, the distribution D witnesses a 0-Ω(
√
T ) truthfulness

gap for every calibration measure in the first two rows of Table 1.
The importance of subsampling in the SSCE becomes apparent in light of the example above.

On distribution D, the truthful forecaster has to pay a Θ(
√
T ) cost for the mild deviation from the

expectation, while a strategic forecaster avoids this deviation by correlating the predictions with the
biases in the past. With the subsampling, however, the forecaster is no longer sure about the biases
that factor into the penalty. This ensures that, compared to truth-telling, the benefit from predicting
strategically is marginal, and thus makes the truthfulness guarantee in Theorem 1.2 possible.

Establishing truthfulness via martingale inequalities. We prove that the SSCE is (O(1), 0)-
truthful in three steps: (1) Define a complexity measure σ(D) of distribution D; (2) Show that
errSSCE(D,Atruthful(D)) = O(σ(D)); (3) Show that OPTSSCE(D) = Ω(σ(D)).

As we elaborate in Section 5, the crux of Step (2) is to control the expected deviation of a martin-
gale (Mt)0≤t≤T with respect to filtration (Ft) by the its realized variance Vart :=

∑t
s=1Var [Ms|Fs−1],

which is highly non-trivial as the two processes (Mt) and (Vart) are correlated. In more detail,
the filtration (Ft) corresponds to the randomness in x ∼ D, while (Mt) tracks the biases in the
predictions (on a subset of the time horizon) tested by a Lipschitz function. We note that such
a bound would easily follow from “off-the-shelf” concentration inequalities for martingales (e.g.,
Freedman’s inequality [Fre75]), if the total realized variance VarT were uniformly bounded. However,
in general, VarT may vary drastically, and directly applying these concentration inequalities would
introduce an extra super-constant factor. Our workaround is a “doubling trick” that divides the time
horizon into epochs, the realized variances in which grow exponentially. We then apply Freedman’s
inequality to each epoch separately. In Section 5, we formulate a toy random walk problem that
highlights this challenge and demonstrates our solution to it, which is of independent interest.

Similarly, as we show in Section 6, the crux of Step (3) is to establish another martingale
inequality. We first show that for fixed x and p, we have SSCE(x, p) = Ω(

√
NT ), where Nt :=∑t

s=1 1 [|xs − ps| ≥ 1/2]. Furthermore, over the randomness in x ∼ D, the realized variance process
(Vart) defined above is shown to lower bound (Nt), i.e., (Nt −Vart) is a sub-martingale. However,
the desired result requires the lower bound E

[√
NT

]
≥ Ω(1) · E

[√
VarT

]
, which does not follow

from E [NT −VarT ] ≥ 0 in general. This challenge necessitates a more careful analysis tailored to
the specific properties of the processes (Nt) and (Vart).

4 Warmup: The Product Distribution Case

As a warmup, in this section, we start by showing that SSCE is (O(1), O(log T ))-truthful for product
distributions. This is a weaker version of Theorem 1.2 in terms of both the truthfulness parameters
of SSCE and the restriction to product distributions. In Sections 5 and 6, we outline how we will
remove these restrictions and improve the analysis of truthfulness.

For distribution D =
∏T

t=1 Bernoulli(p
⋆
t ), take σ2 := Varx∼D

[∑T
t=1 xt

]
=
∑T

t=1 p
⋆
t (1 − p⋆t ) as a

complexity measure of the distribution of outcomes. We will show that errSSCE(D,Atruthful(D)) =
O(σ + log T ) and OPTSSCE(D) = Ω(σ)−O(1).
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4.1 Upper Bound the SSCE of the Truthful Forecaster

We first show that the truthful forecaster for D, which predicts pt = p⋆t at every step t, gives
Ex∼D [SSCE(x, p⋆)] = O(σ + log T ). For this purpose, it suffices to prove

E
x∼D

[smCE(x, p⋆)] = O(σ + log T ), (1)

since for each fixed S ⊆ [T ], applying (1) to x|S and p⋆|S gives Ex∼D [smCE(x|S , p⋆|S)] ≤ O(σ+log T ),
and taking an expectation over S ∼ Unif(2[T ]) gives the desired bound on SSCE.

Recall that E [smCE(x, p⋆)] = E
[
supf∈F

∑T
t=1 f(p

⋆
t ) · (xt − p⋆t )

]
. If we replace F with the family

of constant functions from [0, 1] to [−1, 1], the right-hand side would reduce to

E
x∼D

[∣∣∣∣∣
T∑
t=1

(xt − p⋆t )

∣∣∣∣∣
]
≤

√√√√√ E
x∼D

( T∑
t=1

(xt − p⋆t )

)2
 =

√√√√Var
x∼D

[
T∑
t=1

xt

]
= σ.

Therefore, to prove the upper bound in (1), we need to show that the family of one-dimensional
Lipschitz functions is not significantly richer than constant functions.

At a high level, this is done by taking finite coverings of Lipschitz functions and using Dudley’s
chaining technique [Dud87] to upper bound the value of this stochastic process. In more detail, let
Fδ be the smallest δ-covering of F in the uniform norm, i.e., for each f ∈ F , there exists fδ ∈ Fδ

such that ∥f − fδ∥∞ ≤ δ. It is well-known that |Fδ| = eO(1/δ), and a chaining argument gives

E
x∼D

[
sup
f∈F

T∑
t=1

f(p⋆t ) · (xt − p⋆t )

]
≤ 1 +

O(log T )∑
k=0

E
x∼D

[
max

g∈G
2−k

T∑
t=1

g(p⋆t ) · (xt − p⋆t )

]
, (2)

where Gδ := {fδ − fδ/2 : fδ ∈ Fδ, fδ/2 ∈ Fδ/2, ∥fδ − fδ/2∥∞ ≤ 3δ/2}.
It remains to bound the second term of (2). Note that for a fixed g, because of the independence

of xts, g(p⋆t ) · (xt − p⋆t ) is independent across t ∈ [T ]. Therefore, we can control the tail probability
of
∑T

t=1 g(p
⋆
t ) · (xt − p⋆t ) by Bernstein inequalities. For each fixed δ, using a Bernstein tail bound,

taking a union bound over g ∈ Gδ, and noting that |Gδ| ≤ |Fδ| · |Fδ/2| = eO(1/δ), we have

E
x∼D

[
max
g∈Gδ

T∑
t=1

g(p⋆t ) · (xt − p⋆t )

]
≤ O(δ) ·O

(√
σ2 log |Gδ|+ log |Gδ|

)
= O(σ

√
δ + 1).

Plugging this into (2) proves (1) and thus the desired bound Ex∼D [SSCE(x, p⋆)] = O(σ + log T ).

4.2 Lower Bound the Optimal SSCE

Next, we lower bound OPTSSCE(D) by showing that every forecasting strategy must incur an Ω(σ)
SSCE on D. Recall that SSCE(x, p) is given by

E
y∼Unif({0,1}T )

[
sup
f∈F

T∑
t=1

yt · f(pt) · (xt − pt)

]
≥ E

y∼Unif({0,1}T )

[∣∣∣∣∣
T∑
t=1

yt · (xt − pt)

∣∣∣∣∣
]
,

where we use the fact that F contains the constant functions 1 and −1.
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Fix x ∈ {0, 1}T , p ∈ [0, 1]T and let N :=
∑T

t=1 1 [|xt − pt| ≥ 1/2]. Over the randomness in
y ∼ Unif({0, 1}T ), the quantity

∑T
t=1 yt · (xt − pt), by the central limit theorem, is approximately

distributed as a normal distribution with variance
∑T

t=1
1
4(xt − pt)

2 ≥
∑T

t=1
1
161 [|xt − pt| ≥ 1/2] =

Ω(N), so its expected absolute value is Ω(
√
N).

Now it remains to lower bound the expectation of
√
N induced by an arbitrary forecaster.

Conditioning on x1:(t−1), xt always follows Bernoulli(p⋆t ). Thus, regardless of the choice of pt ∈ [0, 1],
the condition |xt − pt| ≥ 1/2 holds with probability at least min{p⋆t , 1 − p⋆t } ≥ p⋆t (1 − p⋆t ). Then,
over the T steps, we expect that N ≥ Ω(

∑T
t=1 p

⋆
t (1− p⋆t )) = Ω(σ2) holds with probability Ω(1), as

long as σ = Ω(1). This gives the desired lower bound E [SSCE(x, p)] ≳ E
[√

N
]
= Ω(σ)−O(1).

5 Upper Bound the SSCE of the Truthful Forecaster

To extend the proof strategy sketched in Section 4 to non-product distributions, the first challenge
is to define an appropriate complexity measure of a general distribution D. Consider the stochastic
process (Vart)0≤t≤T defined as Vart :=

∑t
s=1 p

⋆
s(1− p⋆s), where

p⋆t := E
x′∼D

[
x′t

∣∣∣x′1:(t−1) = x1:(t−1)

]
is now a random variable that denotes the conditional expectation of xt after observing x1:(t−1). The
“right” definition turns out to be roughly σ(D) := E

[√
VarT

]
. In this section, we first prove the

following weaker upper bound on the SSCE incurred by the truthful forecaster, and then provide
a stronger bound (Theorem 5.7). We defer the proofs of simple facts and technical lemmas to
Appendix C.

Theorem 5.1. For any D ∈ ∆({0, 1}T ), errSSCE(D,Atruthful(D)) = O(E
[√

VarT
]
+ log2 T ).

Proof sketch. We begin by repeating the chaining argument in Section 4. Recall that, for any δ > 0,
there is a δ-covering Fδ of F in the ∞-norm that has size eO(1/δ). Letting πδ(f) denote the mapping
of a function f onto the covering Fδ such that ∥f − πδ(f)∥∞ ≤ δ, we can write for any K ∈ Z+:

SSCE(x, p) ≤ 2−K · T + E
y∼Unif({0,1}T )


K∑
k=0

sup
f∈F

T∑
t=1

yt · (π2−k(f)(pt)− π21−k(f)(pt)) · (xt − pt)︸ ︷︷ ︸
=:Wk

 .

To control the expectation of each Wk, we note that the set Gk := {π2−k(f)− π21−k(f) : f ∈ F}
is of size at most |F2−k | · |F21−k |. Furthermore, every function g ∈ Gk satisfies

∥g∥∞ = ∥π2−k(f)− π21−k(f)∥∞ ≤ ∥π2−k(f)− f∥∞ + ∥f − π21−k(f)∥∞ = O(2−k),

where f ∈ F is the corresponding function to g. We apply the following technical lemma, whose
proof appears in Section 5.1.

Lemma 5.2. Given a function f : [0, 1] → [−1, 1] and y ∈ {0, 1}T , consider the martingale
Mt(f, y) :=

∑t
s=1 ys · f(p⋆s) · (xs − p⋆s) where x ∼ D. Then, for any finite family G of functions from

[0, 1] to [−1, 1] and any y ∈ {0, 1}T , we have

E
x∼D

[
max
f∈G

MT (f, y)

]
≤ O

(
log |G| · log T +

√
log |G| · E

x∼D

[√
VarT

])
.
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Applying Lemma 5.2 to each Gk scaled up by a Θ(2k) factor and noting that log |Gk| ≤ log |F2−k |+
log |F21−k | = O(2k) gives

errSSCE(D,Atruthful(D)) ≤ 2−K · T +
K∑
k=0

O(2−k) ·O
(
2k log T + 2k/2 E

x∼D

[√
VarT

])

≤ 2−K · T +

K∑
k=0

O

(
log T + 2−k/2 E

x∼D

[√
VarT

])
≤ 2−K · T +O

(
K log T + E

x∼D

[√
VarT

])
.

Choosing K = Θ(log T ) proves the theorem.

5.1 Lemma 5.2 and Bounding Random Walks by Realized Variance

We remark that the proof of Lemma 5.2 is highly non-trivial. As mentioned in Section 3, such an upper
bound would follow from Freedman’s inequality, if VarT were always bounded by O

((
E
[√

VarT
])2).

However, in general, applying Freedman’s inequality to each MT (f, y) necessarily requires an
additional union bound over possible values of VarT , and introduces a super-constant multiplicative
factor.

The challenge in dealing with the randomness in VarT is captured by the following toy problem:

Random walk with early stopping: Let (Xt)0≤t≤T be the random walk such that
X0 = 0 and each Xt −Xt−1 independently follows Unif({±1}). Let τ be an arbitrary
stopping time with respect to (Xt). Prove that E [|Xτ |] ≤ O(1) · E [

√
τ ].

Indeed, the above corresponds to a special case of Lemma 5.2 in which: (1) the sequence p⋆ starts
with entry 1/2, and may switch to entry 0 at any point, depending on the realization of xts; (2) the
family G consists of two constant functions 1 and −1.

One might be tempted to prove E [|Xτ |] ≤ O(1) · E [
√
τ ] by first proving E [|Xτ ||τ = t] = O(

√
t)

for all t ∈ [T ], and then applying the law of total expectation. Such an approach is doomed to fail,
because the stopping time τ might significantly bias the conditional expectation of |Xτ | on some
event τ = t0, e.g., by stopping at time t0 only if |Xt0 | ≫

√
t0.

Our workaround is inspired by the standard doubling trick in online learning. We break the
time horizon into epochs of geometrically increasing lengths: the k-th epoch contains 2k steps. We
break |Xτ | into the displacements accumulated in different epochs; their sum clearly upper bounds
|Xτ |. Furthermore, we can show that, conditioning on reaching epoch k, the displacement within
the epoch is O(

√
2k). This allows us to establish the desired inequality via

E [|Xτ |] ≤ O(1) ·
O(log T )∑

k=1

Pr [τ reaches epoch k] ·
√
2k ≤ O(1) · E

[√
τ
]
.

To prove Lemma 5.2, we extend this technique to a general martingale MT (f, y) by dividing the
T time step horizon into epochs τ0, τ1, . . . such that the realized variance Vart(I) increases by
approximately 2k−1 within the k-th epoch. In Definition 5.3, we can understand τk as pointing to
the last time step of the kth epoch.
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Definition 5.3. For I ⊆ [0, 1], consider the stochastic process (Vart(I))0≤t≤T defined as

Vart(I) :=
t∑

s=1

p⋆s(1− p⋆s) · 1 [p⋆s ∈ I] ,

where x ∼ D and p⋆t := Prx′∼D

[
x′t = 1|x′1:(t−1) = x1:(t−1)

]
. We define the epochs with respect to I

as the sequence τ0, τ1, · · · ∈ N where τ0 = 0 and, for each k ∈ [⌈log2(T )⌉+ 2],

τk := min
{
t ∈ [τk−1 + 1, T ] | Vart(I)−Varτk−1

(I) ≥ 2k−1
}
∪ {∞} . (3)

This definition of τ ensures that:

• Epoch 1 starts from time step 1, and ends at the earliest time step t such that Vart(I) ≥ 1 = 20.

• For k ≥ 2, Epoch k starts from the time step after the last step of Epoch k − 1, and ends at
the earliest time step such that the total variance within the epoch reaches 2k−1.

It is also not hard to see that there are at most O(log T ) epochs.

Fact 5.4. The (⌈log2(T )⌉+ 2)-th epoch is never complete, i.e., τ⌈log2(T )⌉+2 =∞.

Our proof of Lemma 5.2 proceeds by decomposing the time horizon as above and then applying
Freedman’s inequality to each epoch individually.

Proof of Lemma 5.2. Let us decompose the martingale MT (f, y) into epochs of doubling realized
variance with respect to I = [0, 1] as per Definition 5.3. Using τ as defined in (3), we will write Ik :=
[τk−1+1,min {T, τk}] to denote the time steps composing epoch k and write K := max {k | τk <∞}
to denote the number of completed epochs.

Applying a triangle inequality and the law of total expectation gives

E
x∼D

[
max
f∈G

T∑
t=1

yt · f(p⋆t ) · (xt − p⋆t )

]

= E
x∼D

max
f∈G

K+1∑
k=1

∑
t∈Ik

yt · f(p⋆t ) · (xt − p⋆t )


≤ E

x∼D

K+1∑
k=1

max
f∈G

∑
t∈Ik

yt · f(p⋆t ) · (xt − p⋆t )


=

⌈log2(T )⌉+2∑
k=1

E
x∼D

[
max
f∈G

T∑
t=1

yt · f(p⋆t ) · (xt − p⋆t ) · 1 [t ∈ Ik]

]

=

⌈log2(T )⌉+2∑
k=1

Pr [τk−1 <∞] · E
x∼D

[
max
f∈G

Mk,f
T | τk−1 <∞

]
. (4)

where we define the process Mk,f
T :=

∑T
t=1 yt · f(p⋆t ) · (xt − p⋆t ) · 1 [t ∈ Ik]. In the above, the second

equality uses Fact 5.4.
We can then apply an in-expectation form of Freedman’s inequality, which is stated below as

Fact 5.5 and take a union bound over G, to each of the martingales Mk,f
T in (4).
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Fact 5.5. For every y ∈ {0, 1}T and k ≥ 2, we can uniformly bound the process Mk,f
T defined in

(13) over a finite class G of functions from [0, 1] to [−1, 1] by

E
x∼D

[
max
f∈G

Mk,f
T | τk−1 <∞

]
≤
√
2k−1(2 + 2

√
log |G|) + 2 + 2 log |G| .

This gives us

E
x∼D

[
max
f∈G

T∑
t=1

yt · f(p⋆t ) · (xt − p⋆t )

]
≤
⌈log2(T )⌉+2∑

k=1

Pr [τk−1 <∞] ·
[√

2k−1(2 + 2
√
log |G|) + 2 + 2 log |G|

]
.

We can upper bound some of the summands in the right-hand side using Fact 5.6.

Fact 5.6. The exponentially weighted sum of probabilities that each epoch ends is at most

⌈log2(T )⌉+2∑
k=2

√
2k−1 Pr[τk−1 <∞] ≤ (2

√
2 + 2)E

[
1 [VarT (I) ≥ 1] ·

√
VarT (I)

]
.

Therefore by algebraic manipulation, we have as claimed:

E
x∼D

[
max
f∈G

T∑
t=1

yt · f(p⋆t ) · (xt − p⋆t )

]
≤ (2 + 2 log |G|)(⌈log2(T )⌉+ 2) + E

[√
VarT

]
(2 + 2

√
2)(2 + 2

√
log |G|).

5.2 Towards a Stronger Upper Bound

In our actual proof, we use a slightly different complexity measure σγ(D) := E [γ(VarT )], where
γ(x) = x if x < 1 and γ(x) =

√
x otherwise. Roughly speaking, this definition accounts for the

fact that a sum of independent Bernoulli random variables behaves quite differently when its mean
is close to 0. In Theorem 5.7, we remove the extra log2 T factor of Theorem 5.1 by choosing this
complexity measure.

Theorem 5.7. For any D ∈ ∆({0, 1}T ), errSSCE(D,Atruthful(D)) = O(E [γ(VarT )]), where

γ(x) :=

{
x, x < 1,
√
x, x ≥ 1.

This proof involves a more careful application of Freedman’s inequality tailored to a specific
covering of Lipschitz functions. Compared to Lemma 5.2, the inequality provided by the lemma
below gives a bound that depends on γ(VarT (I)) (rather than the square root), and avoids the
extra log |G| · log T term. While the leading factor (≈ log |G|) is larger than the one in Lemma 5.2
(≈
√

log |G|), we will only apply the bound to the case that |G| = O(1), where the difference between
the two is only a constant factor.
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Lemma 5.8. Given a function f : [0, 1] → [−1, 1], y ∈ {0, 1}T , and set I ⊆ [0, 1], consider
the martingale Mt(f, y, I) :=

∑t
s=1 yt · f(p⋆s) · (xs − p⋆s) · 1 [p⋆s ∈ I], where x ∼ D, and p⋆t =

Prx′∼D

[
x′t = 1|x′1:(t−1) = x1:(t−1)

]
. Then, for any finite family G of functions from [0, 1] to [−1, 1],

any y ∈ {0, 1}T , and any I ⊆ [0, 1], we have

E
x∼D

[
max
f∈G

MT (f, y, I)
]
≤ 8
(
6 + log(|G|)

)
E

x∼D
[γ(VarT (I))] .

where Vart(I) :=
∑t

s=1 p
⋆
s(1 − p⋆s) · 1 [p⋆s ∈ I] is the realized variance restricted to subset I, and

γ(x) := x if x < 1, and otherwise γ(x) :=
√
x.

In order to use this lemma with |G| = O(1), we will carefully construct a cover of the Lipschitz func-
tions from [0, 1] to [−1, 1], in the ∞-norm d, i.e., for any f, g ∈ F , d(f, g) := supx∈[0,1] |f(x)− g(x)|.
This covering, defined in Lemma 5.9, will consist of piecewise-constant functions. In the lemma
below, for interval [a, b] and δ > 0 where b−a

δ ∈ Z, we use the shorthand [a, b]δ := {a, a+ δ, . . . , b}
to denote endpoints of partitioning of [a, b] into segments of length δ. We also use the shorthand
⌊x⌋δ := max {iδ | iδ ≤ x, i ∈ Z} to denote rounding down to the nearest multiple of δ.

Lemma 5.9. For δ > 0 where 1
δ ∈ Z, consider all functions f : [0, 1]→ [−1, 1] that satisfy conditions

(1) ∀x ∈ [0, 1]δ : f(x) ∈ [−1, 1]δ
(2) ∀x ∈ [0, 1]δ \ {1} : |f(x+ δ)− f(x)| ≤ δ

(3) ∀x ∈ [0, 1] : f(x) = f(⌊x⌋δ).

This set of functions, which we will denote by Fδ, is a 2δ-covering of the set of 1-Lipschitz functions
F : [0, 1]→ [−1, 1] in the metric d.

Our proof of Theorem 5.7 then proceeds by arguing that, if we partition the domain [0, 1] into
segments of length δ, functions in our cover take constant values within each segment. A chaining
argument therefore, within each segment, only needs to apply Freedman’s inequality with a union
bound over a finite number of possible constant-valued functions.

Proof of Theorem 5.7. Given a function f : [0, 1]→ [−1, 1] and binary vector y ∈ {0, 1}T , we define
the martingale Mt(f, y) :=

∑t
s=1 ys · f(p⋆s) · (xs − p⋆s) where x ∼ D and we use Ft to denote the

filtration describing the randomness of MT (f, y) up to time t and p⋆t := E [xt |Ft−1 ]. Note that,
conditioned on Ft−1, xt is distributed as a Bernoulli with parameter p⋆t .

We can write the SSCE of a truthful forecaster in terms of MT (f, y) as

SSCE(x, p⋆) := E
y∼Unif({0,1}T )

[
sup
f∈F

MT (f, y)

]
.

We now proceed via chaining and define the dyadic scale εk = 21−k for k = 0, 1, 2, . . . . To cover the
set of Lipschitz functions F , we will use the sets of piecewise constant functions {Fδ}δ>0 described in
Lemma 5.9. For each function f ∈ F , let πk(f) be a close function in Fεk such that d(f, πk(f)) ≤ 2εk.
Observe that the covering Fε0 is a singleton and that πk(f) always exists as Fεk is a 2εk-covering of
F . Telescoping then gives

f(x) = (f(x)− πK(f)(x)) + π0(f)(x) +

K∑
i=1

[πi(f)(x)− πi−1(f)(x)] ,
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meaning that we have

SSCE(x, p⋆) ≤ E
y∼Unif({0,1}T )

[
sup
f∈F

T∑
t=1

yt · (f(p⋆t )− πK(f)(p⋆t )) · (xt − p⋆t )

]
︸ ︷︷ ︸

(Term A)

+ E
y∼Unif({0,1}T )

[
sup
f∈F

T∑
t=1

yt · π0(f)(p⋆t ) · (xt − p⋆t )

]
︸ ︷︷ ︸

(Term B)

+ E
y∼Unif({0,1}T )

[
sup
f∈F

K∑
i=1

T∑
t=1

yt · (πi(f)(p⋆t )− πi−1(f)(p
⋆
t )) · (xt − p⋆t )

]
︸ ︷︷ ︸

(Term C)

. (5)

First, we can use that d(f(p⋆t )− πK(f)(p⋆t )) ≤ 22−K to deterministically bound Term A by

E
y∼Unif({0,1}T )

[
sup
f∈F

T∑
t=1

yt · (f(p⋆t )− πK(f)(p⋆t )) · (xt − p⋆t )

]
≤ 22−K · T.

Second, we can observe that the image of π0(f) is a singleton: | {π0(f) | f ∈ F} | = 1; let this unique
function be denoted by f⋆. Then, Term B reduces to Ey∼Unif({0,1}T ) [MT (f

⋆, y)], which evaluates
to 0 after taking an expectation over x ∼ D, since for every y ∈ {0, 1}T , (Mt(f

⋆, y))0≤t≤T forms a
martingale. Third, we can observe that πi(f)− πi−1(f) is a function from [0, 1]→

{
−21−i, 0, 21−i

}
that takes a constant value along the segments [(j − 1)21−i, j21−i) for all j ∈ [2i−1]. Thus, we can
bound the summands of Term C by

E
y∼Unif({0,1}T )

[
sup
f∈F

T∑
t=1

yt · (πi(f)(p⋆t )− πi−1(f)(p
⋆
t )) · (xt − p⋆t )

]

≤
2i−1∑
j=0

E
y∼Unif({0,1}T )

[
sup

v∈{0,±21−i}

T∑
t=1

yt · v · (xt − p⋆t ) · 1
[
j21−i ≤ p⋆t < (j + 1)21−i

]]

≤
2i−1∑
j=0

21−i E
y∼Unif({0,1}T )

 sup
v∈{±1}

T∑
t=1

yt · v · (xt − p⋆t ) · 1
[
j21−i ≤ p⋆t < (j + 1)21−i

]
︸ ︷︷ ︸

=:MT (v,y,i,j)

 .

Invoking Lemma 5.8 with G = {x 7→ 1, x 7→ −1} and I =
[
j21−i, (j + 1)21−i

)
, we have that for all

i ∈ [K], j ∈ {0, 1, . . . , 2i−1}, and y ∈ {0, 1}T :

E
x∼D

[
sup

v∈{±1}
MT (v, y, i, j)

]
≤ (48 + 8 ln 2) E

x∼D

[
γ

(
T∑
t=1

p⋆t (1− p⋆t )1
[
j21−i ≤ p⋆t < (j + 1)21−i

])]
.
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Plugging this into Term C, we have

E
x∼D

[Term C] ≤ (48 + 8 ln 2)
K∑
i=1

21−i
2i−1∑
j=0

E
x∼D

[
γ

(
T∑
t=1

p⋆t (1− p⋆t )1
[
j21−i ≤ p⋆t < (j + 1)21−i

])]

= (48 + 8 ln 2)
K∑
i=1

21−i E
x∼D

2i−1∑
j=0

γ

(
T∑
t=1

p⋆t (1− p⋆t )1
[
j21−i ≤ p⋆t < (j + 1)21−i

]) .

We can simplify further using Lemma 5.10, a Cauchy-Schwarz like inquality.

Lemma 5.10. For all values x1, . . . , xn ≥ 0, we can upper bound
∑n

i=1 γ(xi) ≤
√
n · γ(

∑n
i=1 xi).

This give that

E
x∼D

[Term C]

≤ (48 + 8 ln 2)

K∑
i=1

21−i ·
√
2i−1 + 1 E

x∼D

γ
2i−1∑

j=0

T∑
t=1

p⋆t (1− p⋆t )1
[
j21−i ≤ p⋆t < (j + 1)21−i

]
≤ (48 + 8 ln 2)

K∑
i=1

21−i/2 E
x∼D

[
γ

(
T∑
t=1

p⋆t (1− p⋆t )

)]
= (48 + 8 ln 2) · (2 + 2

√
2) · E

x∼D
[γ (VarT )] .

Plugging this into (5) and observing that we can choose K to be arbitrarily large, we have as
desired

E
x∼D

[SSCE(x, p⋆)] ≤ inf
K∈N

[
22−K · T + E

x∼D
[Term C]

]
≤ (48 + 8 ln 2) · (2 + 2

√
2) · E

x∼D
[γ (VarT )] .

6 Lower Bound the Optimal SSCE

In this section, we first illustrate the main proof techniques by showing a weaker lower bound of
Ω(E

[√
VarT

]
)−O(1) on the optimal SSCE in Section 6.1. We then provide our actual proof of the

lower bound in Section 6.2, which avoids the extra −O(1) term in the lower bound by a more careful
analysis tailored to the complexity measure σγ(D) := E [γ(VarT )] defined in Section 5.

We will use the following notation for this section: for all stochastic processes (Xt), we use
Xt1:t2 = Xmin{t2,T} −Xt1 to denote the increment within the time interval (t1, t2] (with X0 = 0 by
default).

6.1 A Weaker Lower Bound

Theorem 6.1. For any D ∈ ∆({0, 1}T ), OPTSSCE(D) = Ω(E
[√

VarT
]
)−O(1).
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Similar to the product distribution case (Section 4), the key quantity in the proof is the stochastic
process (Nt)0≤t≤T defined as Nt :=

∑t
s=1 ns and nt := 1 [|xt − pt| ≥ 1/2]. This is formalized by the

following lemma, which applies to any realization of x, p, and NT =
∑T

t=1 1 [|xt − pt| ≥ 1/2]:

Lemma 6.2. For any x ∈ {0, 1}T and p ∈ [0, 1]T , we have SSCE(x, p) ≥ Ω
(√

NT

)
.

Proof of Lemma 6.2. Recall that SSCE is defined using smCE, which is in turn a supremum over the
family F of Lipschitz functions. Since both f ≡ 1 and f ≡ −1 are included in F , for any realized
sequences x and p, we can lower bound SSCE(x, p) as follows:

SSCE(x, p) ≥ E
y∼Unif({0,1}T )

[∣∣∣∣∣
T∑
t=1

yt · (xt − pt)

∣∣∣∣∣
]
= E

y

[∣∣∣∣∣
T∑
t=1

zt + µ

∣∣∣∣∣
]
,

where we have defined zt := (yt − 0.5)(xt − pt) to be zero-mean independent random variables, and
µ :=

∑T
t=1 0.5(xt − pt). Now we partition [T ] into T1 and T2, where T1 includes the all time steps

such that |xt − pt| ≥ 1
2 , and T2 = T \ T1 contains the remaining time steps. From the definition of

NT , it immediately follows that NT = |T1|. Letting Z1 :=
∑

t∈T1
zt and Z2 :=

∑
t∈T2

zt, it remains
to lower bound E [|Z1 + Z2 + µ|] by Ω(

√
NT ).

We will first prove that E [|Z1|] ≥ C
√
NT for a universal constant C > 0. From the Berry-Esseen

theorem (e.g. from [She10]), the CDF of Z1 can be approximated by the CDF of the standard
normal distribution as follows:

∀x ∈ R,
∣∣∣Pr [Z1 ≤ x · σ0]− Φ(x)

∣∣∣ ≤ C0 · σ−1
0 · ρ0,

where Φ(x) is the standard Gaussian CDF, C0 is a universal constant no larger than 0.56, and

σ0 =

√∑
t∈T1

E
[
z2t
]
=

√
1

4

∑
t∈T1

(xt − pt)2 ≥
1

4

√
NT ;

ρ0 = max
t∈T1

E
[
|zt|3

]
E [|zt|2]

= max
t∈T1

|xt − pt|3/8
|xt − pt|2/4

≤ 1

2
.

As a result, we can lower bound the probability of |Z1| ≥ 0.05
√
NT as follows:

Pr
[
|Z1| ≥ 0.05

√
NT

]
≥ Pr [|Z1| > 0.2 · σ0] (σ0 ≥ 1

4

√
NT )

= 2
(
1− Pr [Z1 ≤ 0.2 · σ0]

)
(Z1 is symmetric)

≥ 2
(
1− Φ(0.2)− 2C0/

√
NT

)
. (Berry-Esseen theorem)

Since C0 ≤ 0.56 and Φ(0.2) ≤ 0.58, we can guarantee Pr
[
|Z1| ≥ 0.05

√
NT

]
≥ Ω(1) for all NT ≥ 8.

When NT ≤ 7, we have |Z1| = NT /2 ≥ 0.05
√
NT when all {zt | t ∈ T1} are positive, which happens

with probability 2−NT ≥ 2−7 = Ω(1). Therefore, we can always conclude that

E [|Z1|] ≥ 0.05
√

NT · Pr
[
|Z1| ≥ 0.05

√
NT

]
≥ C

√
NT

for some universal constant C > 0.
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Finally, we consider the randomness of Z2 and show that E [|Z1 + Z2 + µ|] ≥ C
2

√
NT . Applying

the tower property of expectations, we have

E
y
[|Z1 + Z2 + µ|] = E

[
E
[
|Z1 + Z2 + µ|

∣∣ Z2

]]
.

Consider the following two cases for the conditional expectation inside:

• When |Z2 + µ| ≥ C
2

√
NT , we use Jensen’s inequality and E [Z1] = 0 to obtain

E [|Z1 + Z2 + µ| | Z2] ≥ |E [Z1 + Z2 + µ | Z2] | = |Z2 + µ| ≥ C

2

√
NT .

• When |Z2 + µ| < C
2

√
NT , we apply the triangle inequality and have

E [|Z1 + Z2 + µ| | Z2] ≥ E [|Z1|]− |Z2 + µ| > C
√
NT −

C

2

√
NT =

C

2

√
NT .

Therefore, regardless of the realization of Z2, we always have E [|Z1 + Z2 + µ0| | Z2] ≥ C
2

√
NT .

Taking an expectation over the randomness of Z2 gives the desired bound SSCE(x, p) ≥ C
2

√
NT .

After establishing Lemma 6.2, it remains to lower bound the quantity E
[√

NT

]
induced by

an arbitrary forecaster. As argued earlier, conditioning on x1:(t−1), we always have Pr [nt = 1] ≥
p⋆t (1− p⋆t ) = Vart −Vart−1, where p⋆t and Vart are defined as in Section 5. Thus, (Nt −Vart) is a
sub-martingale, which implies E [NT ] ≥ E [VarT ]. However, this does not imply that E

[√
NT

]
≥

Ω(E
[√

VarT
]
). In fact, such an inequality does not hold in general: When p⋆1 = ε≪ 1 and p⋆t = 0

for all t ≥ 2, E
[√

NT

]
could be O(ε), yet E

[√
VarT

]
= Ω(

√
ε)≫ O(ε).

The following technical lemma circumvents this counterexample by subtracting a constant term
from the right-hand side:

Lemma 6.3. The stochastic process (Nt)t∈[T ] satisfies E
[√

NT

]
≥ Ω(E

[√
VarT

]
)−O(1).

Proof of Lemma 6.3. Since NT ≥ VarT /16 implies
√
NT ≥

√
VarT /4, we have√

NT ≥
√
VarT
4

· 1
[
NT ≥

VarT
16

]
=

√
VarT
4

−
√
VarT
4

· 1
[
NT <

VarT
16

]
.

Therefore, to establish the inequality E
[√

NT

]
≥ Ω(E

[√
VarT

]
)−O(1), it suffices to prove that the

expectation of the second term—which we denote with M—is upper bounded by O(1), i.e.,

M := E
[√

VarT · 1 [NT < VarT /16]
]
≤ O(1). (6)

We proceed by partitioning the range of VarT into subintervals of geometrically increasing length
and enumerating all possibilities for which subinterval VarT falls into. If VarT ≤ 1, its contribution
to M is clearly O(1). Otherwise, we must have VarT ∈ [2l, 2l+1) for some l ∈ N, which implies that
NT < VarT /16 < 2l−3. Therefore, we bound M by taking a union bound over all such l’s:

M ≤ O(1) +
∑
l∈N

E
[√

VarT · 1
[
NT < 2l−3 ∧ VarT ∈ [2l, 2l+1)

]]
≤ O(1) +

∑
l∈N

√
2l+1 · Pr

[
NT < 2l−3 ∧ VarT ≥ 2l

]
. (7)
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Now we bound Pr [NT < k/8 ∧ VarT ≥ k] for any fixed value of k (that plays the role of 2l) by
constructing a sub-martingale. We start by partitioning the time horizon [T ] into blocks based on the
realized variance Vart, such that each block Bj := (bj−1, bj ] terminates upon the realized variance
VarBj first exceeds 1. Formally, using notation Xt1:t2 := Xmin{t2,T} −Xt1 to denote the increment of
any process (Xt) in (t1, t2] (with X0 = 0 by default), the endpoints bj are defined recursively as:

b0 := 0, bj := min {∞} ∪
{
t ∈ [bj−1 + 1, T ] | Varbj−1:t ≥ 1

}
, ∀j ≥ 1.

We show in the following lemma that for each block Bj , the expected increment NBj within Bj is
lower bounded by a constant as long as Bj terminates before T .

Lemma 6.4. For the constant c = 1− 1/e, E
[
1
[
NBj ≥ 1

]
− c · 1 [bj <∞]

∣∣∣ Fbj−1

]
≥ 0.

We prove Lemma 6.4 in Appendix D.1. This lemma justifies that if we define Aj as

A0 := 0, Aj −Aj−1 := 1
[
NBj ≥ 1

]
− c · 1 [bj <∞] (j ≥ 1),

then (Aj)j≥0 forms a sub-martingale of bounded increment |Aj −Aj−1| ≤ 1, making it unlikely for
any Aj to deviate significantly below 0. However, if NT < k/8 and VarT ≥ k, then Ak/2 must witness
a large deviation: on the one hand, block Bk/2 should terminate properly because the variance in
each block cannot exceed 2; on the other hand, NT < k/8 implies that at most k/8 of these blocks
can have a nonzero increment NBj . As a result,

Ak/2 =
∑k

j=1
1
[
NBj ≥ 1

]
− c ·

∑k

j=1
1 [bj <∞] ≤ NT − c · (k/2) < −k/8.

By applying the Azuma-Hoeffding inequality for submartingales, we can quantitatively bound the
probability of such a large deviation by

Pr [NT < k/8 ∧ VarT ≥ k] ≤ Pr
[
Ak/2 ≤ −k/8

]
≤ e−k/64.

Finally, plugging the above bound back into equation (7) gives us

M ≤ O(1) +
∑

l∈N

√
2l+1 · e−2l−6 ≤ O(1).

We have thus established the inequality (6), which in turn proves the lemma.

6.2 The Stronger Lower Bound

In this section, we state and prove the stronger SSCE lower bound for all forecasters.

Theorem 6.5. For any D ∈ ∆({0, 1}T ), OPTSSCE(D) = Ω(E [γ(VarT )]), where the function γ is
defined as γ(x) := x · 1 [0 ≤ x < 1] +

√
x · 1 [x ≥ 1].

Proof of Theorem 6.5. The theorem holds by combining Lemma 6.2, which lower bounds the SSCE
by Ω(

√
NT ), and the stronger lower bound on E

[√
NT

]
shown in Lemma 6.6.

Lemma 6.6. There exists a universal constant C > 0 such that E
[√

NT

]
≥ C · E [γ(VarT )], where

the function γ is defined as γ(x) := x · 1 [0 ≤ x < 1] +
√
x · 1 [x ≥ 1].
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Proof of Lemma 6.6. The proof is also based on partitioning the time horizon into blocks Bj =
(bj−1, bj ]—each with approximately unit variance—similar to the approach used in proving Lemma 6.3.
However, this proof involves a more careful analysis of the growth of

√
Nt by further grouping blocks

into “epochs” and giving special treatment to the first epoch, where the cumulative variance is very
small.

Specifically, consider the blocks Bj = (bj−1, bj ] defined by

b0 := 0, bj := min {∞} ∪
{
t ∈ [bj−1 + 1, T ] | Varbj−1:t ≥ 1

}
, ∀j ≥ 1.

Recall that the increment of Vart satisfies Vart − Vart−1 = p⋆t (1− p⋆t ) ≤ 1/4. Thus, every block j
satisfies VarBj = Varbj − Varbj−1

= (Varbj−1 − Varbj−1
) + (Varbj − Varbj−1) ≤ 1 + 1/4 = 5/4. We

further group blocks into epochs such that the k-th epoch Tk := (τk−1, τk] contains ≈ 2k blocks:

T0 := B1, Tk :=
⋃

j∈(2k−1,2k]

Bj , ∀k ≥ 1 (or equivalently, τk := b2k).

In addition, we define Ñt as the sum of ns capped by 1 in each block:

Ñt :=
∑
j:bj≤t

min{NBj , 1} =
∑
j:bj≤t

1
[
NBj ≥ 1

]
.

Clearly, for all the realized sequences we have NT ≥ ÑT and Ñτk ≤ 2k, where the latter is because

each block contributes at most 1 to Ñt. In the following, we will first analyze the growth of
√
Ñt in

epochs k ≥ 1, then provide a different analysis for the zeroth epoch.

In each epoch Tk with k ≥ 1. We start by establishing the following lemma, which extends the
characterization of Lemma 6.4 into epochs.

Lemma 6.7 (Lower bound on ÑTk). For any k ≥ 1, we have

E
[
ÑTk

]
≥ 2k−2 · Pr [τk <∞] .

Proof of Lemma 6.7. According to Lemma 6.4, we have that in each block Bj = (bj−1, bj ],

E
[
1
[
NBj ≥ 1

]
− c · 1 [bj <∞]

]
= E

[
E
[
1
[
NBj ≥ 1

]
− c · 1 [bj <∞]

∣∣∣ Fbj−1

]]
≥ 0,

where the first step uses the tower property of expectations, and c = 1− 1
e ≥

1
2 .

Summing over all the blocks in epoch Tk, we obtain

E
[
ÑTk

]
=

2k∑
j=2k−1+1

E
[
ÑBj

]
=

2k∑
j=2k−1+1

E
[
1
[
NBj ≥ 1

]]
(Definition of Tk and Ñt)

≥ c · E

 2k∑
j=2k−1+1

1 [bj <∞]

 (Lemma 6.4)

≥ c · E

 2k∑
j=2k−1+1

1 [τk <∞]

 (bj ≤ b2k = τk for all j ≤ 2k)

≥ 2k−2 · Pr [τk <∞] . (c ≥ 1/2)

We have thus established Lemma 6.7.
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With Lemma 6.7, we obtain a lower bound by linearizing the increment of
√
Ñt in each block.

E
[√

Ñτk −
√

Ñτk−1

]
≥ E

[
1

2

(
Ñτk

)− 1
2 ·
(
Ñτk − Ñτk−1

)]
(Concavity of function

√
x)

≥ 2−
k
2
−1 · E

[
Ñτk − Ñτk−1

]
= 2−

k
2
−1 · E

[
ÑTk

]
(Ñτk ≤ 2k)

≥ 2
k
2
−3 · Pr [τk <∞] . (Lemma 6.7)

The first step above can be alternatively justified by
√
a−
√
b = a−b√

a+
√
b
≥ a−b

2
√
a
, which holds for all

a ≥ b ≥ 0.

In epoch T0. We now analyze
√

ÑT0 in epoch 0. Note that the T0 contains only the first
block B1, so this value is either 0 or 1, depending on whether there exists a t ∈ B1 such that
nt = 1

[
|xt − pt| ≥ 1

2

]
= 1.

Recall that in the proof of Lemma 6.4, we have shown that regardless of the choice of pt,

Pr [nt = 1 | Ft−1] = Pr
xt∼Bernoulli(p⋆t )

[|xt − pt| ≥ 1/2] ≥ p⋆t (1− p⋆t )

Therefore, in the special case of product distributions (i.e., the sequence (p⋆t ) is deterministic and
each outcome xt ∼ p⋆t is independent of other time steps), we can directly bound the probability

that
√
ÑT0 = 1 as follows:

Pr

[√
ÑT0 = 1

]
= 1−

τ1∏
t=1

Pr [nt = 0] ≥ 1−
τ1∏
t=1

[1− p⋆t (1− p⋆t )]

≥ 1− exp

(
−

τ1∑
t=1

p⋆t (1− p⋆t )

)
= 1− exp(−VarB1) ≥

1

2
VarB1 ,

where the last step follows from the inequality 1− e−x ≥ x/2 when 0 ≤ x ≤ 5/4, and the fact that
VarB1 ≤ 5/4.

However, in the general case where the sequence (p⋆t ) is itself random and depends on the history
of xt’s, such a direct argument fails. Instead, we use Lemma D.2 that extends the above analysis to
this more general setting.

Lemma 6.8. (Lower bound on ÑT0) For the first epoch, we have E
[√

ÑT0

]
≥ 1

4 E [VarT · 1 [τ1 =∞]].

Lemma 6.8 is itself a similar but more general statement than Lemma 6.4, as it provides a much
tighter bound on the increment of Nt in the first epoch (equivalently first block) when the cumulative
variance is significantly smaller than 1. We prove Lemma 6.8 in Appendix D.2
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Putting everything together. Combining the lower bounds for epoch 0 and epochs k ≥ 1, we
obtain

E
[√

ÑT

]
= E

[√
ÑT0

]
+
∑
k≥1

E
[√

Ñτk −
√
Ñτk−1

]
≥ 1

4
E [VarT · 1 [τ1 =∞]] +

∑
k≥1

2
k
2
−3 · Pr [τk <∞]

=
1

4
E [VarT · 1 [τ1 =∞]] +

∑
k≥1

Pr [τk−1 <∞, τk =∞]
∑
k′<k

2
k′
2
−3

≥ 1

8
√
2
E

VarT · 1 [τ1 =∞] +
∑
k≥1

1 [τk−1 <∞, τk =∞] · 2
k
2


≥ 1

16
E

VarT · 1 [τ1 =∞] +
∑
k≥1

1 [τk−1 <∞, τk =∞] ·
√
VarT

 ,

where the last step follows from the observation that the cumulative variance in each block cannot
exceed 2, so τk = ∞ implies that VarT < 2k+1, i.e., 2k/2 ≥

√
VarT /

√
2. Finally, since τ1 = ∞ is

equivalent to VarT < 1, we have established that

E
[√

ÑT

]
≥ 1

16
E
[
VarT · 1 [VarT < 1] + 1 [VarT ≥ 1] ·

√
VarT

]
=

1

16
E [γ(VarT )] .

The lemma follows from the fact that NT ≥ ÑT always holds, which implies E
[√

NT

]
≥ E

[√
ÑT

]
≥

1
16 E [γ(VarT )].

7 SSCE is Sound, Complete, and Approximately Truthful

In this section, we prove our main theorem (Theorem 1.2) by combining the theorems established in
the previous sections, and then verifying the completeness and soundness of the SSCE. We then prove
that a deterministic forecaster incurs a O(

√
T ) SSCE against all adaptive adversaries (Theorem 1.3).

Proof of Theorem 1.2. Let D ∈ ∆({0, 1}T ) be an arbitrary distribution and define the random
variable

VarT :=

T∑
t=1

p⋆t (1− p⋆t ),

over x ∼ D, where p⋆t := Prx′∼D

[
x′t = 1 | x′1:(t−1) = x1:(t−1)

]
. By Theorems 5.7 and 6.5, the truthful

forecaster gives

errSSCE(D,Atruthful(D)) = O

(
E

x∼D
[γ(VarT )]

)
,

whereas
OPTSSCE(D) = Ω

(
E

x∼D
[γ(VarT )]

)
.

In the above, the O(·) and Ω(·) notations hide universal constants that do not depend on D.
Therefore, there exists a universal constant c > 0 such that the SSCE is (c, 0)-truthful.
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Completeness. Now we verify that the SSCE is complete. For any x ∈ {0, 1}T , we have

SSCE(x, x) = E
y∼Unif({0,1}T )

[
sup
f∈F

T∑
t=1

yT · f(xt) · (xt − xt)

]
= 0.

For any α ∈ [0, 1], the upper bound

E
x1,...,xT∼Bernoulli(α)

[
SSCE(x, α · 1⃗T )

]
= O(

√
T · α · (1− α)) = oα(T )

follows from applying Theorem 5.7 to the product distribution D =
∏T

t=1 Bernoulli(α) and the fact
that γ(x) ≤

√
x for all x ≥ 0.

Soundness. To show that the SSCE is sound, we first consider the case that x ∈ {0, 1}T is
arbitrary and the predictions are p = 1⃗T − x. Noting that the function x 7→ 1/2− x is in the family
F of 1-Lipschitz functions from [0, 1] to [−1, 1], we have

SSCE(x, 1⃗T − x) = E
y∼Unif({0,1}T )

[
sup
f∈F

T∑
t=1

yt · f(1− xt) · (xt − (1− xt))

]

≥ E
y∼Unif({0,1}T )

[
T∑
t=1

yt · (xt − 1/2) · (2xt − 1)

]

= E
y∼Unif({0,1}T )

[
1

2

T∑
t=1

yt

]
=

T

4
= Ω(T ),

where the third step holds since (x− 1/2) · (2x− 1) = 1/2 holds for every x ∈ {0, 1}.
Finally, we fix α, β ∈ [0, 1] such that α ̸= β. For fixed x, y ∈ {0, 1}T , we have

sup
f∈F

T∑
t=1

yt · f(β) · (xt − β) =

∣∣∣∣∣
T∑
t=1

yt · (xt − β)

∣∣∣∣∣ .
Taking an expectation over x1, . . . , xT ∼ Bernoulli(α) and y ∼ Unif({0, 1}T ) gives

E
x1,...,xT∼Bernoulli(α)

[
SSCE(x, β · 1⃗T )

]
= E

x,y

[
sup
f∈F

T∑
t=1

yt · f(β) · (xt − β)

]

= E
x,y

[∣∣∣∣∣
T∑
t=1

yt · (xt − β)

∣∣∣∣∣
]

≥

∣∣∣∣∣Ex,y
[

T∑
t=1

yt · (xt − β)

]∣∣∣∣∣
=

∣∣∣∣α− β

2
· T
∣∣∣∣ = Ωα,β(T ),

where the third step follows from Jensen’s inequality E [|X|] ≥ |E [X] |.
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7.1 A Deterministic Algorithm for O(
√
T ) SSCE

We now prove Theorem 1.3, which states the existence of a deterministic forecaster that incurs an
O(
√
T ) SSCE against all adaptive adversaries. Recall the definition of the smooth calibration error

(smCE) from Section 2. The key step in the proof is to establish the following relation between SSCE
and smCE.

Lemma 7.1. For any x ∈ {0, 1}T and p ∈ [0, 1]T ,

SSCE(x, p) ≤ 1

2
smCE(x, p) +O(

√
T ),

where the O(·) notation hides a universal constant that does not depend on T , x or p.

Theorem 1.3 follows from the lemma above and a recent result of [ACRS24].

Proof of Theorem 1.3. It was shown by [ACRS24] that there exists a deterministic forecaster with an
O(
√
T ) distance from calibration (CalDist(x, p)) against every adaptive adversary in the adversarial

sequential calibration setup. Lemma 7.1 together with the inequality 1
2smCE(x, p) ≤ CalDist(x, p)

from [BGHN23, Lemma 5.4 and Theorem 7.3] implies that

SSCE(x, p) ≤ CalDist(x, p) +O(
√
T ),

so the same forecaster incurs an SSCE of O(
√
T ) as well.

Now we prove Lemma 7.1 via a standard chaining argument.

Proof of Lemma 7.1. We decompose the SSCE as follows:

SSCE(x, p)

= E
y∼Unif({0,1}T )

[
sup
f∈F

T∑
t=1

yt · f(pt) · (xt − pt)

]

≤ E
y∼Unif({0,1}T )

[
sup
f∈F

T∑
t=1

(
yt −

1

2

)
· f(pt) · (xt − pt)

]
+

1

2
sup
f∈F

T∑
t=1

f(pt) · (xt − pt).

Note that the second term is exactly 1
2smCE(x, p), so it suffices to bound the first term by O(

√
T ).

For notational convenience, let M
(f)
T :=

∑T
t=1

(
yt − 1

2

)
· f(pt) · (xt − pt) for function f ∈ F . We

will establish the following bound for any N ≥ 1 and functions f1, f2, . . . , fN from [0, 1] to [−1, 1]:

E
y∼Unif({0,1}T )

[
sup
i∈[N ]

M
(fi)
T

]
≤ O(

√
T logN). (8)

Assuming Inequality (8), applying Dudley’s chaining technique [Dud87] to the δ-covering Fδ defined
in Lemma 5.9 would give

E
y∼Unif({0,1}T )

[
sup
f∈F

M
(f)
T

]
≲
∫ 1

0

√
T log |Fδ| dδ (chaining)

≲
√
T ·
∫ 1

0
δ−

1
2 dδ (log |Fδ| ≤ O(1/δ) from Lemma 5.9)

≤ O(
√
T ),
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which implies the lemma.
Therefore, it remains to establish Inequality (8). We prove this using Hoeffding’s inequality and

a union bound. For each i ∈ [N ] and every ε > 0, we have

Pr

[
sup
i∈[N ]

M
(fi)
T ≥ ε

]
≤

N∑
i=1

Pr
[
M

(fi)
T ≥ ε

]
(union bound)

≤
N∑
i=1

exp

(
− 2ε2∑T

t=1(xt − pt)2fi(pt)2

)
(Hoeffding’s inequality)

≤ N · exp
(
−2ε2

T

)
. (∥fi∥∞ ≤ 1, ∀i ∈ [N ])

Finally, the bound (8) holds by taking an integral over ε > 0: shorthanding X := supi∈[N ]M
(fi)
T , we

have

E [X] ≤
∫ +∞

0
Pr [X ≥ τ ] dτ ≤

∫ +∞

0
min{N · e−2τ2/T , 1} dτ = O(

√
T logN).

This completes the proof.

8 Discussion

We formulate three natural desiderata of calibration measures that evaluate the quality of probabilistic
forecasts: truthfulness, completeness, and soundness. They serve as minimal requirements for an
error metric to be considered as measuring calibration and not to create a significant incentive for
forecasters to predict untruthfully. While existing calibration measures fail to simultaneously meet
all these criteria, we propose the new calibration measure (SSCE) that is shown to be approximately
truthful via a non-trivial analysis. In the following, we discuss two natural directions of future work.

Inherent trade-offs among different desiderata? As shown in Table 1, the SSCE and the
error metrics induced by proper scoring rules give a trade-off between truthfulness and completeness:
The former is complete and approximately truthful, while the latter is perfectly truthful but not
complete. Is there a calibration measure that achieves the best of both worlds? Taking a step
back, while our definition of truthfulness seems natural, the completeness and soundness criteria, as
defined, only serve as minimal requirements. It still remains to explore ways to formally quantify
the latter two, and investigate the inherent quantitative trade-offs among truthfulness, completeness
and soundness.

Truthfulness against adaptive adversaries? One may wonder whether the truthfulness guar-
antee of SSCE can be extended to handle adaptive adversaries as well. Assuming that the forecaster
is given an adversary’s (randomized) strategy for choosing xt based on x1:(t−1) and p1:(t−1), is it still
approximately optimal to always predict the conditional probability? Here, “adaptive” emphasizes
that xt may depend on both x1:(t−1) and p1:(t−1); the formulation in Section 2 is equivalent to that
xt only depends on x1:(t−1).

Unfortunately, such a guarantee does not hold for SSCE, and is unlikely to hold for any natural
calibration measure: An adversary can “force” the forecaster to predict untruthfully by “threatening” to
increase the variance of the subsequent bits. Suppose that the adversary draws x1 from Bernoulli(1/2).
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If the forecaster predicts p1 = 0, all the subsequent bits are zeros; otherwise, the adversary keeps
producing independent samples from Bernoulli(1/2). Clearly, the truthful forecaster predicts pt = 1/2
at every step t ∈ [T ], and the resulting outcome sequence x is uniform over {0, 1}T . The resulting
SSCE is then Θ(T 1/2) in expectation. If the forecaster keeps predicting pt = 0 instead, the expectation
of SSCE(x, p) is only O(1). Note that this impossibility holds for any calibration measure CM that
satisfies

E
x1,...,xT∼Bernoulli(1/2)

[
CMT (x, 1⃗T /2)

]
= ω(1)

and
E

x1∼Bernoulli(1/2)

[
CMT (x1 ◦ 0⃗T−1, 0⃗T )

]
= O(1),

where ◦ denotes concatenation.
However, this adversary is highly contrived and unrealistic for practical scenarios. We may thus

identify reasonable restrictions on the adaptive adversary to sidestep this counterexample.
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Calibration Measure Complete? Sound? Truthful?

Expected Calibration Error ✓ ✓ 0-Ω(T ) gap

Maximum Swap Regret ✓ ✓ 0-Ω(T ) gap

Smooth Calibration Error ✓ ✓ 0-Ω(
√
T ) gap

Distance from Calibration ✓ ✓ 0-Ω(
√
T ) gap

Interval Calibration Error ✓ ✓ 0-Ω(
√
T ) gap

Laplace-Kernel Calibration Error ✓ ✓ 0-Ω(
√
T ) gap

U-Calibration Error ✓ ✓ O(1)-Ω(
√
T ) gap

Proper Scoring Rules × ✓ (1, 0)-truthful

smCE+
√
T × ✓ (O(1), 0)-truthful

Subsampled Smooth Calibration Error ✓ ✓ (O(1), 0)-truthful

Table 2: Evaluation of previous calibration measures along with SSCE, in terms of completeness,
soundness and truthfulness (Definitions 2.2 and 2.5). Every calibration measure, except SSCE, either
lacks completeness or has a significant truthfulness gap.

A Taxonomy of Existing Calibration Measures

In this section, we prove that the existing calibration measures in Table 2 either have a large
truthfulness gap or lack completeness.

In these proofs, the biases induced by specific outcomes and predictions will be frequently used:
With respect to outcomes x ∈ {0, 1}T and predictions p ∈ [0, 1]T , the bias associated with value
α ∈ [0, 1] is defined as

∆α :=

T∑
t=1

(xt − pt) · 1 [pt = α] .

A.1 Existing Calibration Measures

The expected calibration error. A common calibration measure is the sum of L1 errors of each
level set, known as the L1 calibration error or the Expected Calibration Error (ECE): On x ∈ {0, 1}T
and p ∈ [0, 1]T , the expected calibration error is defined as

ECE(x, p) :=
∑

α∈[0,1]

∣∣∣∣∣
T∑
t=1

(xt − pt) · 1[pt = α]

∣∣∣∣∣ = ∑
α∈[0,1]

|∆α|.
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Note that the summand |∆α| is non-zero only if α ∈ {p1, p2, . . . , pT }, so the summations above are
essentially finite and well-defined.

The smooth calibration error. The smooth calibration error [KF08] is defined as

smCE(x, p) := sup
f∈F

T∑
t=1

f(pt) · (xt − pt) = sup
f∈F

∑
α∈[0,1]

f(α) ·∆α,

where F is the family of 1-Lipschitz functions from [0, 1] to [−1, 1]. Again, since ∆α ̸= 0 holds only
if α ∈ {p1, p2, . . . , pT }, the summation above is finite and well-defined.

The distance from calibration. The distance from calibration, introduced by [BGHN23] and
extended to the sequential setup by [QZ24], is defined as:

CalDist(x, p) := min
q∈C(x)

∥p− q∥1,

where

C(x) :=

{
p ∈ [0, 1]T : ∀a ∈ [0, 1],

T∑
t=1

(xt − pt) · 1[pt = α] = 0

}
is the set of predictions that are perfectly calibrated for x.

Interval calibration. The interval calibration error of [BGHN23] relaxes the ECE to a binned
version while penalizing the use of long intervals. Formally, an interval partition I is a finite collection
of intervals {I1, I2, . . . , I|I|} that form a partition of [0, 1]. The interval calibration error is defined
as:

intCE(x, p) := inf
I

 |I|∑
i=1

∣∣∣∣∣
T∑
t=1

(xt − pt) · 1 [pt ∈ Ii]

∣∣∣∣∣+
T∑
t=1

|I|∑
i=1

len(Ii) · 1 [pt ∈ Ii]

 ,

where the infimum is over all interval partitions I, and len(I) denotes the length of interval I.
Note that the first summation inside the infimum is analogous to the ECE, except that the biases
associated with all values within the same interval are added together. The second summation gives
the total lengths of the intervals into which the T predictions fall.

Laplace-kernel calibration. The Laplace-kernel calibration error [BGHN23] is a special case of
the maximum mean calibration error introduced by [KSJ18]. It can be viewed as a variant of the
smooth calibration error, in which the family F of Lipschitz functions is replaced by

F̃ :=
{
f : R→ R : ∥f∥22 + ∥f ′∥22 ≤ 1

}
,

where ∥ · ∥2 denotes the ℓ2 norm of functions, and f ′ is the derivative of f . Namely,

kCELap(x, p) := sup
f∈F̃

T∑
t=1

f(pt) · (xt − pt).
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U-calibration. The definition of the U-calibration error [KLST23] is based on proper scoring
rules. A (bounded) scoring rule is a function S : {0, 1} × [0, 1]→ [−1, 1]. A scoring rule is proper if
it holds for every α ∈ [0, 1] that

α ∈ argmin
β∈[0,1]

E
x∼Bernoulli(α)

[S(x, β)] .

In other words, when the outcome x is drawn from follow Bernoulli(α), predicting the true parameter
α minimizes the expected loss. The U-calibration error is then defined as

UCal(x, p) := sup
S

[
T∑
t=1

S(xt, pt)− inf
α∈[0,1]

T∑
t=1

S(xt, α)

]
,

where the supremum is over all proper scoring rules. Note that for each fixed S, the expression
inside the supremum is exactly the external regret of the forecaster, i.e., the excess loss compared to
the best fixed prediction in hindsight.

Maximum swap regret. A recent line of work [NRRX23, RS24, HW24] considers a strengthening
of U-calibration, in which the external regret is replaced with the swap regret. In particular,
[HW24] showed that the resulting calibration measure, termed the Maximum Swap Regret (MSR),
is polynomially related to the ECE after scaling by a factor of 1/T :[

ECE(x, p)

T

]2
≤ MSR(x, p)

T
≤ 2ECE(x, p)

T
.

A.2 0-Ω(T ) Truthfulness Gaps

We first prove the 0-Ω(T ) truthfulness gaps of the ECE and the MSR.

Proposition A.1. Both the expected calibration error and the maximum swap regret have a 0-Ω(T )
truthfulness gap.

To establish Proposition A.1, we follow a similar argument to the one in Section 3: We divide
the time horizon into T/3 triples, each containing a random bit followed by a zero and a one. The
truthful forecaster would predict the true probabilities for the T/3 random bits, which are designed
to be close to 1/2 but distinct. This leads to a linear ECE. On the other hand, a strategic forecaster
may always predict 1/2 on the random bit. Then, based on the realization of the random bit, they
use the subsequent deterministic bits to offset the bias. The resulting predictions are perfectly
calibrated, and thus have a zero ECE. Finally, the relation between the ECE and the MSR gives the
same truthfulness gap for the MSR.

Proof of Proposition A.1. Consider the distribution D defined as follows:

• Let ε1, ε2, . . . , εT/3 be distinct values in [−1/4, 1/4] chosen arbitrarily.

• For each k ∈ [T/3], set (p⋆3k−2, p
⋆
3k−1, p

⋆
3k) = (1/2 + εk, 0, 1).

• D is the product distribution
∏T

t=1 Bernoulli(p
⋆
t ).
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By definition, the predictions made by the truthful forecaster are exactly given by p⋆. Then,
for each k ∈ [T/3] and α = 1/2 + εk ∈ [1/4, 3/4], we have |∆α| = |x3k−2 − α| ≥ 1/4. This shows

errECE(D,Atruthful(D)) ≥ (T/3) · (1/4) = Ω(T ). By the inequality MSR(x,p)
T ≥

[
ECE(x,p)

T

]2
, we also

have errMSR(D,Atruthful(D)) = Ω(T ).
On the other hand, consider the following alternative forecaster for D:

• For each k ∈ [T/3], predict p3k−2 = 1/2.

• If x3k−2 = 0, predict p3k−1 = 0 and p3k = 1/2; otherwise, predict p3k−1 = 1/2 and p3k = 1.

Clearly, for each k ∈ [T/3], the steps t ∈ {3k − 2, 3k − 1, 3k} have zero contribution to ∆0, ∆1

and ∆1/2. Therefore, this forecaster achieves a zero ECE on D. This proves OPTECE(D) = 0 and
establishes the 0-Ω(T ) truthfulness gap for the ECE. Finally, the inequality MSR(x,p)

T ≤ 2ECE(x,p)
T

implies that the same forecaster achieves a zero MSR, which establishes OPTMSR(D) = 0 and the
0-Ω(T ) truthfulness gap for the MSR.

A.3 0-Ω(
√
T ) Truthfulness Gaps

Next, we prove the 0-Ω(
√
T ) truthfulness gap for several calibration measures. The proof follows the

argument outlined in Section 3.

Proposition A.2. The smooth calibration error, the distance from calibration, the interval calibration
error, and the Laplace-kernel calibration error all have a 0-Ω(

√
T ) truthfulness gap.

Proof. The truthfulness gaps of the four calibration measures are witnessed by the same product
distribution D =

∏T
t=1 Bernoulli(p

⋆
t ), where (p⋆3k−2, p

⋆
3k−1, p

⋆
3k) = (1/2, 0, 1) for every k ∈ [T/3].

Truthful forecaster has an Ω(
√
T ) penalty. The truthful forecaster makes predictions that

are identical to p⋆. As a result, we have ∆0 = ∆1 = 0, while ∆1/2 is distributed as the difference
between a sample from Binomial(T/3, 1/2) and its mean T/6. It then follows that |∆1/2| ≥ Ω(

√
T )

holds with probability Ω(1). We will show that all four calibration measures evaluate to Ω(
√
T ) in

expectation.
For the smooth calibration error, we have

errsmCE(D,Atruthful(D)) = E
x∼D

[
|∆1/2|

]
= E

X∼Binomial(T/3,1/2)
[|X − T/6|] = Ω(

√
T ).

For the distance from calibration, by [BGHN23, Lemma 5.4 and Theorem 7.3], we have the
inequality 1

2smCE(x, p) ≤ CalDist(x, p) for any x ∈ {0, 1}T and p ∈ [0, 1]T , so the truthful forecaster
also gives errCalDist(D,Atruthful(D)) = Ω(

√
T ).

For interval calibration, let I be an arbitrary interval partition, and I ∈ I be the interval that
contains 1/2. If I contains either 0 or 1, we must have len(I) ≥ 1/2, and the term

∑T
t=1

∑|I|
i=1 len(Ii) ·

1 [pt ∈ Ii] will be at least 2T/3 · 1/2 = Ω(T ). If I does not contain 0 or 1, the summation∑T
t=1(xt − pt) · 1 [pt ∈ I] will be exactly ∆1/2, and the first term in the definition will be at least

|∆1/2|. It follows that intCE(x, p) ≥ Ω(
√
T ) with probability Ω(1), so we have the lower bound

errintCE(D,Atruthful(D)) = Ω(
√
T ).
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For Laplace-kernel calibration, let f0 be an arbitrary function in F̃ such that f0(1/2) > 0, e.g.,
we can take f0(x) = ce−x2 for a sufficiently small constant c > 0. Then, we have

kCELap(x, p) ≥ sup
f∈{f0,−f0}

∑
α∈[0,1]

f(α) ·∆α ≥ Ω(1) · |∆1/2|.

It follows that errkCELap(D,Atruthful(D)) ≥ Ω(1) · E
[
|∆1/2|

]
= Ω(

√
T ).

Strategic forecaster has a zero penalty. Consider the same strategic forecaster as in the proof
of Proposition A.1: For each k ∈ [T/3],

• Predict p3k−2 = 1/2.

• If x3k−2 = 0, predict (p3k−1, p3k) = (0, 1/2); otherwise, predict (p3k−1, p3k) = (1/2, 1).

Clearly, this guarantees that ∆α = 0 holds for all α ∈ [0, 1]. By definition, we have OPTsmCE(D) =
OPTCalDist(D) = 0. It also easily follows that both intCE and kCELap evaluate to 0. For intCE, we
consider the interval partition I = {{0}, (0, 1/2), {1/2}, (1/2, 1), {1}}, which witnesses intCE(x, p) =
0. For kCELap, the summation

∑T
t=1 f(pt) · (xt− pt) =

∑
α∈[0,1] f(α) ·∆α evaluates to 0 for all f ∈ F̃ .

This proves OPTintCE(D) = OPTkCELap(D) = 0.

A.4 O(1)-Ω(
√
T ) Truthfulness Gap of U-Calibration

For the U-calibration error, we prove a slightly smaller truthfulness gap of O(1)-Ω(
√
T ), via a more

involved analysis.

Proposition A.3. The U-calibration error has an O(1)-Ω(
√
T ) truthfulness gap.

Proof. We use a slightly different construction: the product distribution D =
∏T

t=1 Bernoulli(p
⋆
t )

where p⋆t = 1/2 for t ≤ T/2 and p⋆t = 1 for t > T/2.

Truthful forecaster has an Ω(
√
T ) penalty. We first show that the truthful forecaster has an

Ω(
√
T ) U-calibration error. Let random variable X :=

∑T/2
t=1 xt denote the number of ones among

the first T/2 random bits. Note that X follows Binomial(T/2, 1/2). Consider the scoring rule defined
as:

S(0, α) = sgn(α− 1/2) and S(1, α) = sgn(1/2− α).

Note that S is proper, since for any α ∈ [0, 1], we have

E
x∼Bernoulli(α)

[S(x, β)] = (1− α) · sgn(β − 1/2) + α · sgn(1/2− β) = (1− 2α) · sgn(β − 1/2),

which is always minimized at β = α.
The total loss (w.r.t. S) incurred by the forecaster is then

T∑
t=1

S(xt, pt) = X · S(1, 1/2) + (T/2−X) · S(0, 1/2) + T/2 · S(1, 1)

= X · 0 + (T/2−X) · 0 + T/2 · (−1)
= −T/2.
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On the other hand, the total loss incurred by a fixed prediction β ∈ [0, 1] is given by:

T∑
t=1

S(xt, β) = (T/2 +X) · S(1, β) + (T/2−X) · S(0, β)

= (T/2 +X) · sgn(1/2− β) + (T/2−X) · sgn(β − 1/2)

= 2X · sgn(1/2− β).

By choosing β = 1, we can obtain a total loss of −2X. Therefore, whenever X ≥ T/4, we have

UCal(x, p) ≥ −T/2− (−2X) = 2(X − T/4).

When X < T/4, we always have UCal(x, p) ≥ 0, since the trivial scoring rule S ≡ 0 is proper. This
shows that the truthful forecaster gives

errUCal(D,Atruthful(D)) ≥ E
X∼Binomial(T/2,1/2)

[max{2(X − T/4), 0}] = Ω(
√
T ).

Strategic forecaster with an O(1) penalty. We consider an alternative forecaster A, which is
slightly more involved:

• At every step t ≤ T/2, predict pt = 5/8.

• For t = T/2 + 1, T/2 + 2, . . . , T , predict pt = 5/8 until |∆5/8| ≤ 1 at some time t. After that
step, predict pt = 1.

We first argue that the condition |∆5/8| ≤ 1 must hold at some point. Recall that X =
∑T/2

t=1 xt.
By a Chernoff bound, X falls into [T/8, 5T/16] except with probability e−Ω(T ). Assuming this, we
have ∆5/8 = X − (T/2) · (5/8) ≤ 0 at time t = T/2. Furthermore, if we hypothetically predict 5/8
for each of the last T/2 steps, we would have

∆5/8 = (X + T/2)− T · (5/8) ≥ T/8 + T/2− 5T/8 = 0

after all the T steps. Since ∆5/8 changes by at most 1 at each step, we must hit the condition
|∆5/8| ≤ 1 at some point.

Therefore, except with an e−Ω(T ) probability, we end up with ∆5/8 ∈ [−1, 1]. Furthermore, we
predict at most two different values: 5/8 and 1. For every fixed proper scoring rule S : {0, 1}×[0, 1]→
[−1, 1], we have

T∑
t=1

S(xt, pt)− inf
β∈[0,1]

T∑
t=1

S(xt, β)

≤
∑

α∈{5/8,1}

[
T∑
t=1

S(xt, pt) · 1 [pt = α]− inf
β∈[0,1]

T∑
t=1

S(xt, β) · 1 [pt = α]

]
.

In the above, we divide the time horizon [T ] into two parts, based on whether 5/8 or 1 is predicted.
The inequality holds since the right-hand side allows different values of β for different parts. Clearly,
the term corresponding to α = 1 has zero contribution, since it reduces to S(1, 1)− infβ∈[0,1] S(1, β)
times the number of times 1 is predicted, which evaluates to 0 by definition of proper scoring rules.

34



The term corresponding to α = 5/8, on the other hand, is given by

N0 · S(0, 5/8) +N1 · S(1, 5/8)− inf
β∈[0,1]

[N0 · S(0, β) +N1 · S(1, β)],

where each Nb denotes the number of steps on which 5/8 is predicted and the outcome is b ∈ {0, 1}.
By definition of proper scoring rules, the infimum is achieved by β⋆ = N1

N0+N1
, and the above can be

further simplified into
(N0 +N1) · [S (β⋆, 5/8)− S (β⋆, β⋆)],

where S(α, β) := α · S(1, β) + (1− α) · S(0, β) is the linear extension of S to [0, 1]2.
Let ℓ(α) := S(α, α) denote the uni-variate form of S. The following is a standard fact about

proper scoring rules (see e.g., [KLST23, Lemma 1 and Corollary 2]).

Lemma A.4. For any proper scoring rule S : [0, 1]2 → [−1, 1] and its uni-variate form ℓ : [0, 1]→
[−1, 1], it holds for all α, β ∈ [0, 1] that

• S(α, β) = ℓ(β) + (α− β) · ℓ′(β)

• |ℓ′(α)| ≤ 2 for all α ∈ [0, 1].

In particular, we have

|S(β⋆, 5/8)− S(5/8, 5/8)| = |β⋆ − 5/8| · ℓ′(5/8) ≤ 2|β⋆ − 5/8|

and
|S(5/8, 5/8)− S(β⋆, β⋆)| = |ℓ(5/8)− ℓ(β⋆)| ≤ 2|β⋆ − 5/8|.

It follows that, assuming X ∈ [T/8, 5T/16],

UCal(x, p) ≤ 4(N0 +N1)|β⋆ − 5/8| = 4

∣∣∣∣N1 −
5

8
(N0 +N1)

∣∣∣∣ = 4|∆5/8| ≤ 4.

When X ∈ [T/8, 5T/16] does not hold (which happens with probability e−Ω(T )), the U-calibration
error is trivially upper bounded by O(T ). It follows that

OPTUCal(D) ≤ errUCal(D,A) ≤ 4 +O(T ) · e−Ω(T ) = O(1).

A.5 Lack of Completeness

Every scoring rule S : {0, 1} × [0, 1] → [0, 1] induces a calibration measure CM(S)(x, p) :=∑T
t=1 S(xt, pt).

1 When S is proper, it is easy to show that the resulting CM(S) is perfectly truthful,
i.e., (1, 0)-truthful.

A drawback of such calibration measures is that they all lack completeness. Concretely, consider
the squared loss S(x, p) := (x−p)2. When the outcomes x1, x2, . . . , xT are independent and uniformly
random bits, the “right” prediction pt ≡ 1/2 gives a total penalty of T/4, which is only a constant
factor away from the maximum possible penalty of T . This violates the completeness property in

1Here, we consider scoring rules with co-domain [0, 1], since our definition of calibration measures (in Section 2)
requires them to be bounded between 0 and T on length-T sequences.
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Definition 2.2. In contrast, as shown in Table 2, almost all the other calibration measures would
evaluate to ≪ T in this case. Such an asymptotic gap better justifies the intuition that pt ≡ 1/2 is a
much better prediction than, say, pt ≡ 0.

More generally, unless the proper scoring rule S is trivial, we may find (x0, p0) ∈ {0, 1} × (0, 1)
such that S(x0, p0) > 0. Then, on a sequence of independent samples from Bernoulli(p0), we have

E
x1,...,xT∼Bernoulli(p0)

[
CM

(S)
T (x, p0 · 1⃗)

]
≥ T · S(x0, p0) · Pr

X∼Bernoulli(p0)
[X = x0]

≥ T · S(x0, p0) ·min{p0, 1− p0} = Ω(T ),

which violates the completeness condition in Definition 2.2.
We also note that smCE(x, p) +

√
T gives a calibration measure that is trivially truthful: Implicit

in the proof of [QZ24, Theorem 3], the truthful forecaster gives an O(
√
T ) smooth calibration error on

every distribution D ∈ ∆({0, 1}T ), so it immediately gives a constant approximation of the optimal
error, which is at least

√
T . However, this metric is not complete in the sense of Definition 2.2, since

it evaluates to
√
T instead of 0 when p = x (i.e., the predictions are binary and perfect). While SSCE

also discourages the forecaster from “over-optimizing” the metric by introducing some additional
noise, the subsampling procedure is arguably more “organic” and better-justified than adding a

√
T

term.

B Proof of Theorem 1.1

We prove Theorem 1.1, which we formally restate below.

Theorem B.1 (Formal version of Theorem 1.1). For every p⋆ ∈ [0, 1]T , on the product distribution
D =

∏T
t=1 Bernoulli(p

⋆
t ), there is a forecaster that achieves an O(log3/2 T ) smooth calibration error

and distance from calibration. Moreover, assuming that p⋆ ∈ [δ, 1−δ]T for a fixed constant δ ∈ (0, 1/2],
both OPTsmCE(D) and OPTCalDist(D) are Ω(

√
T ).

B.1 The Upper Bound Part

We start by proving the upper bound part of Theorem B.1 by designing a forecasting algorithm.

The forecasting algorithm. Our proof is based on an algorithm of [QZ24] that works for the
special case that p⋆t ≡ 1/2. Their algorithm starts by predicting 1/2 on the first T/2 steps. Depending
on the realization of these T/2 random bits, it predicts a slightly biased value for the next T/2 steps,
until the total bias (i.e., the partial sum of xt − pt) becomes close to 0 at some point. If there is still
time left, the algorithm repeats the above strategy for the remainder of the time horizon.

Roughly speaking, [QZ24] shows that a polylog(T ) distance from calibration can be achieved by
designing a sub-routine with the following three properties:

• Small bias: With high probability, the total bias is O(1) in magnitude at some time t ∈
[T/2, T ].

• Proximity of predictions: During the sub-routine, the values being predicted lie in a short
interval of length polylog(T )/

√
T .

• Sparsity of predictions: During the sub-routine, only O(1) different values are predicted.
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To handle the general case that p⋆ ∈ [0, 1]T is arbitrary, we design an alternative sub-routine,
the behavior of which depends on whether the sequence p⋆ is “sufficiently stationary” in some sense.
Let µfirst :=

1
T/2

∑T/2
t=1 p

⋆
t and µsecond := 1

T/2

∑T
t=T/2+1 p

⋆
t be the averages of the first and the second

halves of the sequence, respectively. Let µ = (µfirst + µsecond)/2 be the overall average.

• Case 1: |µfirst−µ| > polylog(T )/
√
T . When µfirst and µ are far away, we predict α := µfirst+µ

2
at every step. Without loss of generality, suppose that µfirst < µ, in which case we have

µfirst < α < µ,

where both inequalities hold with a margin > polylog(T )/
√
T . Then, with high probability

the following two events happen: (1) The total bias is negative at time T/2, i.e., it holds that∑T/2
t=1 xt < α · (T/2); (2) If we (hypothetically) predict the same value α for the second half,

the bias will be positive in the end with high probability, i.e.,
∑T

t=1 xt > α · T . Therefore,
with high probability, the bias must be close to 0 at some point in [T/2, T ]. In this case, this
sub-routine has all the desired properties.

• Case 2: |µfirst − µ| ≤ polylog(T )/
√
T . When µfirst and µ are close, we use a strategy that is

more similar to the algorithm of [QZ24]. For the first half of the sequence, we predict α := µfirst.
Let ∆first :=

∑T/2
t=1(xt − α) denote the total bias at time T/2. Say that ∆first ≥ 0. Then, we

will predict β := µsecond +
∆first
T/2 + polylog(T )√

T
in the second half of the sequence. The value of β

is chosen such that we can offset the bias incurred in the first half (i.e., the ∆first/(T/2) term).
We also introduce some additional bias (i.e., the polylog(T )/

√
T term), so that we can return

to a zero bias with high probability. In this case, our sub-routine predicts two different values
(α and β), and they only differ by polylog(T )/

√
T with high probability.

Formally, our algorithm is given in Algorithm 1. The actual algorithm is significantly more
involved than the outline above. The complication is due to the constraint that all predictions must
lie in [0, 1], while our choice of β in Case 2 above might be invalid. We circumvent this issue by
noting that β can be invalid only if µfirst is too close to either 0 or 1. In that case, we will choose a
different value of α (i.e., the prediction for the first half), so that the sign of the bias at time T/2 is
more predictable, and the resulting choice of β will likely be valid.

The analysis. We analyze Algorithm 1 and prove the upper bound in Theorem B.1 in the following
three steps:

• First, we break the execution of Algorithm 1 into different rounds of the while-loop, and show
that each round brings a polylog(T ) smooth calibration error in expectation.

• Then, using the simple observation that the smooth calibration error is sub-additive, we obtain
an upper bound on the overall smooth calibration error.

• Finally, we use a relation between smCE(x, p) and CalDist(x, p) when p only contains a few
different values (shown by [QZ24]) to translate the upper bound to one on the distance from
calibration.

The first step is the most technical. We fix r and condition on the value of t (equivalently, the value
of T (r)) at the beginning of the r-th round. Note that the event t = t0 is solely determined by the
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Algorithm 1: Forecaster for Product Distributions
Input: Parameters p⋆1, p

⋆
2, . . . , p

⋆
T . Outcomes x1, x2, . . . , xT observed sequentially.

Output: Predictions p1, p2, . . . , pT .
1 t← 0; r ← 0;
2 while t < T do
3 r ← r + 1; T (r) ← T − t; H(r) ← ⌊T (r)/2⌋;
4 if T (r) = 1 then predict pT = 0 and break;

5 µ
(r)
first ←

1
H(r)

∑t+H(r)

s=t+1 p⋆s; µ
(r)
second ←

1
H(r)

∑t+2H(r)

s=t+H(r)+1
p⋆s;

6 µ(r) ← [µ
(r)
first + µ

(r)
second]/2; ∆

(r) ← 0;

7 if |µ(r)
first − µ(r)| ≥

√
2 lnT (r)

H(r) then

8 α(r) ← [µ
(r)
first + µ(r)]/2;

9 for i = 1, 2, . . . , 2H(r) do
10 t← t+ 1; Predict pt ← α(r);
11 Observe xt; ∆(r) ← ∆(r) + (xt − pt);
12 if i > H(r) and |∆(r)| ≤ 1 then break;
13 end
14 else
15 if µ

(r)
first ≤ 1/2 then

16 if µ
(r)
first ≥ 10

√
lnT (r)

H(r) then α(r) ← µ
(r)
first ;

17 else α(r) ← max

{
µ
(r)
first −

√
2µ

(r)
first lnT (r)

H(r) , 0

}
;

18 else

19 if 1− µ
(r)
first ≥ 10

√
lnT (r)

H(r) then α(r) ← µ
(r)
first ;

20 else α(r) ← min

{
µ
(r)
first +

√
2[1−µ

(r)
first] lnT (r)

H(r) , 1

}
;

21 for i = 1, 2, . . . ,H(r) do
22 t← t+ 1; Predict pt ← α(r);
23 Observe xt; ∆(r) ← ∆(r) + (xt − pt);
24 end

25 if ∆(r) ≥ 0 then β(r) ← min

{
µ
(r)
second +∆(r)/H(r) +

√
lnT (r)

2H(r) , 1

}
;

26 else β(r) ← max

{
µ
(r)
second +∆(r)/H(r) −

√
lnT (r)

2H(r) , 0

}
;

27 for i = 1, 2, . . . ,H(r) do
28 t← t+ 1; Predict pt ← β(r);
29 Observe xt; ∆(r) ← ∆(r) + (xt − pt);
30 if |∆(r)| ≤ 1 then break;
31 end
32 end
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realization of x1, x2, . . . , xt0 , so conditioning on the value of t, the subsequent bits xt+1 through xT
are still distributed according to D. Let sequences x(r) and p(r) denote the outcomes and predictions
made in the r-th round. Note that the two sequences are of the same length, though the length
might vary.

We classify the rounds into three different types as follows:

• Type 1: The condition |µ(r)
first − µ(r)| ≥

√
2 lnT (r)

H(r) holds in the if-statement on Line 7.

• Type 2: |µ(r)
first − µ(r)| <

√
2 lnT (r)

H(r) , and α(r) is set to µ
(r)
first on either Line 16 or Line 19.

• Type 3: |µ(r)
first − µ(r)| <

√
2 lnT (r)

H(r) , and α(r) is not set to µ
(r)
first.

Note that for fixed p⋆, the type of a round is deterministic given r and T (r).
The three lemmas below give high-probability bounds on the smooth calibration error incurred

during each round.

Lemma B.2. Conditioning on the value of T (r), if the r-th round is Type 1, it holds with probability
1−O(1/T (r)) that

smCE(x(r), p(r)) ≤ 1.

Lemma B.3. Conditioning on the value of T (r), if the r-th round is Type 2, it holds with probability
1−O(1/T (r)) that

smCE(x(r), p(r)) ≤ 1 +O

(
1

T (r)

)
·
[
∆

(r)
first

]2
+O

√ log T (r)

T (r)

 · ∣∣∣∆(r)
first

∣∣∣ ,
where ∆

(r)
first denotes the value of ∆(r) at the end of the first for-loop (on Line 25).

Lemma B.4. Conditioning on the value of T (r), if the r-th round is Type 3, it holds with probability
1−O(1/T (r)) that

smCE(x(r), p(r)) ≤ 1 +O

(
1

T (r)

)
·
[
∆

(r)
first

]2
+O

√ log T (r)

T (r)

 · ∣∣∣∆(r)
first

∣∣∣ ,
where ∆

(r)
first denotes the value of ∆(r) at the end of the first for-loop (on Line 25).

We first prove the upper bound part of Theorem B.1 using the lemmas above.

Proof of Theorem B.1, the upper bound part. By Lemmas B.2 through B.4, regardless of the type
of the r-th round, it holds with probability 1−O

(
1/T (r)

)
that

smCE(x(r), p(r)) ≤ 1 +O

(
1

T (r)

)
·
[
∆

(r)
first

]2
+O

√ log T (r)

T (r)

 · ∣∣∣∆(r)
first

∣∣∣ ,
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where ∆
(r)
first is regarded as 0 if the r-th round is Type 1. We say that the round fails if this upper

bound on smCE does not hold. Conditioning on that T (r) = L, we always have smCE(x(r), p(r)) ≤ L,
since there are at most L steps in the r-th round. Therefore, we have the inequality

smCE(x(r), p(r)) ≤ 1 +O

(
1

L

)
·
[
∆

(r)
first

]2
+O

(√
logL

L

)
·
∣∣∣∆(r)

first

∣∣∣+ L · 1 [round r fails] .

We will upper bound the value of E
[
smCE(x(r), p(r))

]
by taking an expectation over both sides of

the above. Therefore, we examine the expectation of |∆(r)
first| and [∆

(r)
first]

2 conditioning on T (r) = L.
When the round is Type 1, there is nothing to upper bound. For Type 2 rounds, ∆(r)

first is the
difference between Xfirst =

∑t+H
s=t+1 xs and its mean µfirstH. Since the variance of Xfirst is O(L), we

have E
[∣∣∣∆(r)

first

∣∣∣] = O(
√
L) and E

[[
∆

(r)
first

]2]
= O(L).

Type 3 rounds are trickier. We assume that µfirst ≤ 1/2; this is without loss of generality since the
µfirst > 1/2 case can be handled by a completely symmetric argument. Then, ∆(r)

first is the difference

between Xfirst =
∑t+H

s=t+1 xs and αH, and α may differ from µfirst by at most
√

2µfirst lnL
H . This gives

E
[[

∆
(r)
first

]2]
= E

[
(Xfirst − µfirstH)2

]
+ (µfirstH − αH)2

≤ O(L) +O(µfirstH lnL).

Now we use the fact that when µfirst ≤ 1/2, the round is Type 3 only if µfirst < 10
√

lnT (r)

H . This
implies

O(µfirstH lnL) ≤ O(
√
L · log3/2 L),

which is dominated by the O(L) term. It then follows from Jensen’s inequality that

E
[∣∣∣∆(r)

first

∣∣∣] ≤√E
[[
∆

(r)
first

]2]
= O(

√
L).

Put everything together. Therefore, we have the upper bound

E
[
smCE(x(r), p(r))

∣∣∣T (r) = L
]

≤ 1 + E

[
O

(
1

L

)
· [∆(r)

first]
2 +O

(√
logL

L

)
· |∆(r)

first|

∣∣∣∣∣T (r) = L

]
+ L · Pr

[
round r fails

∣∣∣T (r) = L
]

≤ 1 +O(
√
logL) + L ·O(1/L) = O(

√
log T ).

The second step applies our earlier conclusion that E
[
|∆(r)

first|
]
= O(

√
L) and E

[
[∆

(r)
first]

2
]
= O(L)

conditioning on T (r) = L. Taking another expectation over the randomness in T (r) shows that
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smCE(x(r), p(r)) = O(
√
log T ) for every r. Note that we have

smCE(x, p) = sup
f∈F

T∑
t=1

f(pt) · (xt − pt)

= sup
f∈F

∑
r

∑
t

f(p
(r)
t ) · (x(r)t − p

(r)
t )

≤
∑
r

sup
f∈F

∑
t

f(p
(r)
t ) · (x(r)t − p

(r)
t )

=
∑
r

smCE(x(r), p(r)).

Furthermore, there are at most O(log T ) rounds. It follows that E [smCE(x, p)] = O(log3/2 T ).
Finally, we note that in each round of the while-loop, the forecaster predicts at most 2 different

values (namely, α(r) and β(r)). Therefore, the predictions p1, p2, . . . , pT contain at most O(log T )
different values. By [QZ24, Theorem 2], we conclude that

E [CalDist(x, p)] ≤ O(1) · E [smCE(x, p) + |{p1, p2, . . . , pT }|] = O(log3/2 T ).

Now we prove Lemmas B.2 through B.4. In the proofs below, we frequently drop the superscript
(r) since we only refer to the r-th round.

Proof of Lemma B.2. Recall that a Type 1 round is one in which the condition |µfirst−µ| ≥
√

2 lnT (r)

H
holds in the if-statement. We say that the round succeeds, if we exit the for-loop using the “break”
statement on Line 12, i.e., the condition i > H and |∆(r)| ≤ 1 holds at some point (including in the
last iteration where i = 2H); otherwise, the round fails.

Note that only one value (namely, α(r)) is predicted within the round. Thus, if the round succeeds,
we have

smCE(x(r), p(r)) = |∆α(r) | =
∣∣∣∆(r)

∣∣∣ ≤ 1.

It remains to control the probability for a Type 1 round to fail. Consider random variables

Xfirst :=
t+H∑
s=t+1

xs and X :=
t+2H∑
s=t+1

xs.

Note that both are sums of independent Bernoulli random variables, with E [Xfirst] = µfirstH and
E [X] = 2µH. Also note that since α = (µfirst + µ)/2, we have

|µfirst − α| = |µ− α| = 1

2
|µfirst − µ| ≥

√
lnT (r)

2H
.

Without loss of generality, suppose that µfirst ≤ µ. By an additive Chernoff bound, we have

Pr [Xfirst/H ≥ α] ≤ exp
(
−2H (α− µfirst)

2
)
≤ 1

T (r)
.
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and
Pr [X/(2H) ≤ α] ≤ exp

(
−4H (α− µ)2

)
≤ 1

T (r)
.

Therefore, except with probability O(1/T (r)), we have both Xfirst < αH and X > 2αH. In other
words, if the for-loop (hypothetically) runs all the 2H iterations, we would have ∆(r) < 0 at the
end of the H-th iteration, and ∆(r) > 0 at the end of the 2H-th iteration. Since ∆(r) changes by
|xt − pt| ≤ 1 within each iteration, there must be an iteration i ∈ {H + 1, H + 2, . . . , 2H} at the end
of which ∆(r) falls into [0, 1]. By definition of Algorithm 1, we exit the for-loop at that time, and
the r-th round succeeds.

Proof of Lemma B.3. Recall that in a Type 2 round, we have |µfirst − µ| <
√

2 lnT (r)

H and α = µfirst.
Without loss of generality, suppose that µfirst ≤ 1/2; the case that µfirst > 1/2 follows from a
completely symmetric argument. We say that a Type 2 round succeeds if both conditions below are
satisfied:

• When β is chosen, the clipping (i.e., taking the minimum with 1 or taking the maximum with
0) is not effective.

• We exit the second for-loop through the break statement on Line 30.

Otherwise, the round fails.
Again, we first upper bound the smooth calibration error incurred within a successful round, and

then control the probability for a round to fail. Since only α and β are predicted in this round, we
have

smCE(x(r), p(r)) = sup
f∈F

[f(α) ·∆α + f(β) ·∆β],

where ∆α and ∆β are defined with respect to x(r) and p(r). The above is further given by

sup
f∈F

[f(β) · (∆α +∆β) + [f(α)− f(β)] ·∆α]

≤ sup
f∈F

[f(β) · (∆α +∆β)] + sup
f∈F

[(f(α)− f(β)) ·∆α]

= |∆α +∆β|+ |α− β| · |∆α|.

Note that ∆α+∆β is exactly the value of ∆(r) at the end of the second for-loop, while ∆α is its value
after the first for-loop, i.e., ∆(r)

first. Then, assuming that the round succeeds, we have |∆α +∆β| ≤ 1
and

|α− β| = |µfirst − β| ≤ |µfirst − µsecond|+ |µsecond − β|

≤
√

2 lnT (r)

H
+

(
|∆(r)

first|
H

+

√
lnT (r)

2H

)

= O

(
1

T (r)

)
· |∆(r)

first|+O

√ log T (r)

T (r)

 .
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Plugging the above back into the upper bound on smCE(x(r), p(r)) shows that in a successful Type 2
round,

smCE(x(r), p(r)) ≤ 1 +O

(
1

T (r)

)
· [∆(r)

first]
2 +O

√ log T (r)

T (r)

 · |∆(r)
first|.

In the following, we show that a Type 2 round succeeds with probability 1 − O(1/T (r)). Let
Xfirst :=

∑t+H
s=t+1 xs. Note that Xfirst is a sum of H independent Bernoulli random variables and

E [Xfirst] = µfirstH. Furthermore, we have ∆
(r)
first = Xfirst − µfirstH. By an additive Chernoff bound,

we have

Pr

[
|∆(r)

first| ≤
√

H lnT (r)

2

]
= Pr

[
|Xfirst/H − µfirst| ≤

√
lnT (r)

2H

]
≥ 1− 2

T (r)
. (9)

Recall that we need to argue that no clipping is applied when β is chosen. We analyze the
following two cases:

• Case 1. ∆
(r)
first ≥ 0. In this case, we need to show that

µsecond +
∆

(r)
first

H
+

√
lnT (r)

2H
≤ 1.

Recall that we assumed µfirst ≤ 1/2 and |µfirst − µ| <
√

2 lnT (r)

H . The latter further implies

|µfirst − µsecond| = 2|µfirst − µ| <
√

8 lnT (r)

H . Thus, it suffices to prove that√
8 lnT (r)

H
+
|∆(r)

first|
H

+

√
lnT (r)

2H
≤ 1

2
.

When |∆(r)
first| ≤

√
H lnT (r)

2 (i.e., the event in Equation (9) holds), the left-hand side above

is O

(√
log T (r)

T (r)

)
, which is below 1/2 as long as T (r) exceeds some universal constant T0.

Therefore, the probability that a clipping is applied is at most O(1/T (r)), where we absorb the
constraint T (r) ≥ T0 into the hidden constant in O(·).

• Case 2. ∆
(r)
first < 0. In this case, we need to show that

µsecond +
∆

(r)
first

H
−
√

lnT (r)

2H
≥ 0.

Recall that the definition of Type 2 rounds implies µfirst ≥ 10
√

lnT (r)

H . Thus, it suffices to
prove that

10

√
lnT (r)

H
−
√

2 lnT (r)

H
−
|∆(r)

first|
H

−
√

lnT (r)

2H
≥ 0.

The above holds whenever the event in Equation (9) happens, since 10−
√
2−1/

√
2−1/

√
2 > 0.
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Finally, we argue that, with high probability, we exit the second for-loop via the break statement.
Let Xsecond :=

∑t+2H
s=t+H+1 xs denote the total outcome in the second half. By symmetry, we only

deal with the case that ∆
(r)
first ≥ 0, where we have β = µsecond +∆

(r)
first/H +

√
lnT (r)

2H . If the second
for-loop runs all the H iterations in full, at the end of it, the value of ∆(r) will be given by

∆
(r)
first +Xsecond − βH = Xsecond − µsecondH −

√
H lnT (r)

2
.

Note that the above is non-negative only if Xsecond ≤ µsecondH +
√

H lnT (r)

2 , which, by an additive
Chernoff bound, holds with probability at most 1/T (r). Therefore, with probability 1− 1/T (r), the
value of ∆(r) must fall into [−1, 0] during the second for-loop, and we will take the break statement
accordingly.

Proof of Lemma B.4. Again, without loss of generality, suppose that µfirst ≤ 1/2; the other case
follows from a completely symmetric argument. In contrast to Type 1 and Type 2 rounds, we say
that a Type 3 round succeeds if all the following conditions hold simultaneously:

• ∆
(r)
first ≥ 0, i.e., ∆(r) ≥ 0 holds at the end of the first for-loop (on Line 25).

• When β is chosen, the clipping (i.e., taking the minimum with 1) is not effective.

• We exit the second for-loop through the break statement on Line 30.

Otherwise, the round fails.
By the same argument as in the proof of Lemma B.3, in a successful Type 3 round, we have

smCE(x(r), p(r)) ≤ 1 +O

(
1

T (r)

)
· [∆(r)

first]
2 +O

√ log T (r)

T (r)

 · |∆(r)
first|.

The only change in the argument is the upper bound on |α− β|, since α is no longer equal to µfirst.
Nevertheless, we still have

|α− β| ≤ |α− µfirst|+ |µfirst − µsecond|+ |µsecond − β|

≤
√

2µfirst lnT (r)

H
+

√
2 lnT (r)

H
+

(
|∆(r)

first|
H

+

√
lnT (r)

2H

)

= O

(
1

T (r)

)
· |∆(r)

first|+O

√ log T (r)

T (r)

 ,

and the rest of the analysis goes through.
Thus, it remains to show that a Type 3 round succeeds with probability 1 − O(1/T (r)). Let

Xfirst :=
∑t+H

s=t+1 xs. Note that Xfirst is a sum of independent Bernoulli random variables and
E [Xfirst] = µfirstH. By a multiplicative Chernoff bound, for any δ ≥ 0, we have

Pr [Xfirst/H ≤ (1− δ)µfirst] ≤ exp
(
−δ2µfirstH/2

)
.
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In particular, plugging δ =
√

2 lnT (r)

µfirstH
into the above gives

Pr

[
Xfirst/H ≤ µfirst −

√
2µfirst lnT (r)

H

]
≤ 1

T (r)
.

Recall that α is chosen as the maximum between µfirst−
√

2µfirst lnT (r)

H and 0. Thus, with probability
at least 1 − 1/T (r), we have Xfirst/H ≥ α, which is equivalent to ∆(r) ≥ 0 at the end of the first
for-loop.

Then, we need to argue that when β is chosen, we have µsecond +∆(r)/H +
√

lnT (r)

2H ≤ 1. We
will show the equivalent inequality:

(µsecond − 1/2) + ∆(r)/H +

√
lnT (r)

2H
≤ 1/2.

For the first term, we note that since µ = (µfirst + µsecond)/2, the assumption |µfirst − µ| <
√

2 lnT (r)

H

implies |µfirst− µsecond| = O

(√
log T (r)

T (r)

)
. With the additional assumption that µfirst ≤ 1/2, we have

µsecond − 1/2 ≤ (µfirst − 1/2) + |µfirst − µsecond| ≤ O

√ log T (r)

T (r)

 .

For the second term, we note that, at the end of the first for-loop, ∆(r)/H is given by

Xfirst − αH

H
=

(
Xfirst

H
− µfirst

)
+ (µfirst − α).

By an additive Chernoff bound, Xfirst
H − µfirst ≤ O

(√
log T (r)

T (r)

)
holds with probability 1−O(1/T (r)).

By our choice of α, µfirst−α is always O
(√

log T (r)

T (r)

)
. Finally, the last term is clearly O

(√
log T (r)

T (r)

)
.

Therefore, as long as T (r) is larger than a universal constant T0, the total O
(√

log T (r)

T (r)

)
term is

upper bounded by 1/2. Again, we can absorb the condition T (r) ≥ T0 into the big-O notation, so
the second condition (that β is not clipped) is satisfied with probability 1−O(1/T (r)).

Finally, we argue that we exit the second for-loop via the break statement with high probability.
Let Xsecond :=

∑t+2H
s=t+H+1 xs denote the total outcome in the second half. Recall that we have

∆(r) ≥ 0 at the end of the first for-loop, and that β = µsecond +∆(r)/H +
√

lnT (r)

2H . If the second
for-loop runs all the H iterations in full, at the end of it, the value of ∆(r) will be given by

∆
(r)
first +Xsecond − βH = Xsecond − µsecondH −

√
H lnT (r)

2
.

Note that the above is non-negative only if Xsecond ≤ µsecondH +
√

H lnT (r)

2 , which, by an additive
Chernoff bound, holds with probability at most 1/T (r). Therefore, with probability 1− 1/T (r), the
value of ∆(r) must fall into [−1, 0] during the second for-loop, and we will take the break statement
accordingly.
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B.2 The Lower Bound Part

We prove the lower bound part of Theorem B.1 via a central limit theorem.

Proof of Theorem B.1, the lower bound part. On the product distribution D =
∏T

t=1 Bernoulli(p
⋆
t ),

the truthful forecaster predicts pt = p⋆t at every step t. Then, we have

E
x∼D

[smCE(x, p⋆)] = E
x∼D

[
sup
f∈F

T∑
t=1

f(p⋆t ) · (xt − p⋆t )

]
≥ E

x∼D

[∣∣∣∣∣
T∑
t=1

(xt − p⋆t )

∣∣∣∣∣
]
,

where we use the fact that F contains the constant functions f ≡ 1 and f ≡ −1.
Applying the Berry-Esseen theorem [She10] to the random variable X :=

∑T
t=1(xt − p⋆t ) gives:

∀x ∈ R,
∣∣∣Pr [X ≤ x · σ0]− Φ(x)

∣∣∣ ≤ C0 · σ−1
0 · ρ0,

where Φ(x) is CDF of the standard normal distribution, C0 ≤ 0.56 is a universal constant, and

σ0 =

√√√√ T∑
t=1

E [(xt − p⋆t )
2] =

√√√√ T∑
t=1

p⋆t (1− p⋆t ) ≥
√
Tδ(1− δ);

ρ0 = max
t∈[T ]

E
[
|xt − p⋆t |3

]
E [|xt − p⋆t |2]

= max
t∈[T ]

p⋆t (1− p⋆t ) · [(p⋆t )2 + (1− p⋆t )
2]

p⋆t (1− p⋆t )
≤ 1.

In particular, taking x = −1 gives:

Pr [X ≤ −σ0] ≥ Φ(−1)− C0 · σ−1
0 · ρ0 = Ω(1)−O(1/

√
T ).

For all sufficiently large T , the O(1/
√
T ) term is dominated by the Ω(1) term, in which case we have

E
x∼D

[smCE(x, p⋆)] ≥ E [|X|] ≥ σ0 · Pr [X ≤ −σ0] = Ω(
√
T ).

Finally, by the inequality 1
2smCE(x, p) ≤ CalDist(x, p) [BGHN23, Lemma 5.4 and Theorem 7.3], the

distance from calibration incurred by the truthful forecaster is also Ω(
√
T ).

C Supplemental Materials for Section 5

C.1 Auxillary Lemmas

Covering Lipschitz functions.

Lemma 5.9. For δ > 0 where 1
δ ∈ Z, consider all functions f : [0, 1]→ [−1, 1] that satisfy conditions

(1) ∀x ∈ [0, 1]δ : f(x) ∈ [−1, 1]δ
(2) ∀x ∈ [0, 1]δ \ {1} : |f(x+ δ)− f(x)| ≤ δ

(3) ∀x ∈ [0, 1] : f(x) = f(⌊x⌋δ).

This set of functions, which we will denote by Fδ, is a 2δ-covering of the set of 1-Lipschitz functions
F : [0, 1]→ [−1, 1] in the metric d.
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Proof. Fix a 1-Lipschitz function f ∈ F . Let f ′ ∈ Fδ be the function in our covering where, for all
x ∈ [0, 1]δ, f ′(x) = ⌊f(x)⌋δ. Note that f ′ is unique because the elements of Fδ can be identified by
their image on [0, 1]δ. For any x ∈ [0, 1], we have∣∣f(x)− f ′(x)

∣∣ ≤ |f(x)− f(⌊x⌋δ)|+
∣∣f ′(x)− f ′(⌊x⌋δ)

∣∣+ ∣∣f(⌊x⌋δ)− f ′(⌊x⌋δ)
∣∣

≤ |x− ⌊x⌋δ|+ 0 +
∣∣f(⌊x⌋δ)− f ′(⌊x⌋δ)

∣∣
≤ 2δ,

where the first inequality is the triangle inequality, the second inequality uses the 1-Lipschitzness
of f and that f ′(x) = f ′(⌊x⌋δ), and the third inequality uses the fact that |f(z)− f ′(z)| ≤ δ and
|z − ⌊z⌋δ| ≤ δ for all z ∈ [0, 1].

Bounding sums of γ. Consider the piecewise function γ(x) :=

{
x, x < 1,
√
x, x ≥ 1.

Lemma 5.10. For all values x1, . . . , xn ≥ 0, we can upper bound
∑n

i=1 γ(xi) ≤
√
n · γ(

∑n
i=1 xi).

Proof. First, suppose that
∑n

i=1 xi ≤ 1. Then, γ(
∑n

i=1 xi) =
∑n

i=1 xi and xi ≤ 1 for all i ∈ [n]. The
claim is therefore equivalent to the trivial statement

∑n
i=1 xi ≤

√
n ·
∑n

i=1 xi.
Now suppose that

∑n
i=1 xi > 1. The Cauchy-Schwarz inequality gives

n∑
i=1

√
xi ≤

√
n

√√√√ n∑
i=1

xi.

By our assumption that
∑n

i=1 xi > 1, we have γ(
∑n

i=1 xi) =
√∑n

i=1 xi. We separately have that

n∑
i=1

γ(xi) ≤
n∑

i=1

√
xi,

because γ(x) = x ≤
√
x for x ∈ [0, 1] and γ(x) =

√
x =
√
x for x ≥ 1. Thus,

n∑
i=1

γ(xi) ≤
n∑

i=1

√
xi ≤

√
n

√√√√ n∑
i=1

xi =
√
n · γ

(
n∑

i=1

xi

)
.

C.2 Epochs of Doubling Realized Variance

We have the following technical facts about the epochs τ defined in Definition 5.3.

Fact 5.4. The (⌈log2(T )⌉+ 2)-th epoch is never complete, i.e., τ⌈log2(T )⌉+2 =∞.

Proof. Our definition of Vart(I) clearly guarantees VarT (I) ≤ T , which implies

VarT (I)−Varτ⌈log2(T )⌉+1
(I) ≤ T < 2⌈log2(T )⌉+1,

and therefore, τ⌈log2(T )⌉+2 =∞.
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Fact C.1. For every epoch k ∈ [⌈log2(T )⌉ + 2], the change in realized variance in epoch k is
deterministically upper bounded by Varτk(I)−Varτk−1

(I) < 2k−1 + 1.

Proof. By definition, Varτk−1(I)−Varτk−1
(I) < 2k−1. Because p⋆t ∈ [0, 1] for all t ∈ [T ], the realized

variance increases by at most p⋆t (1− p⋆t ) ≤ 1 in each timestep, i.e. Varτk(I)−Varτk−1(I) ≤ 1. The
fact follows by summing the two inequalities.

Fact C.2. For any epoch k ∈ [⌈log2(T )⌉+ 2], the probability that the kth epoch ends is at most

Pr [τk <∞] ≤ min

{
E
[
1[VarT (I)≥1]·

√
VarT (I)

]
√
2k−1

, 1

}
.

Proof. The sequence of realized variances Var1(I), . . . ,VarT (I) is deterministically non-decreasing.
Thus, for every epoch k ∈ [⌈log2(T )⌉+ 2],

Pr [τk <∞] ≤ Pr
[
VarT (I)−Varτk−1

≥ 2k−1 ∧VarT (I) ≥ 1
]

≤ Pr
[
1 [VarT (I) ≥ 1] ·VarT (I) ≥ 2k−1

]
= Pr

[
1 [VarT (I) ≥ 1] ·

√
VarT (I) ≥

√
2k−1

]
,

with the second inequality following as τ1 <∞ implies VarT (I) ≥ 1. We can next invoke Markov’s
inequality Pr [X ≥ a] ≤ E[X]

a with a =
√
2k−1 and X = 1 [VarT (I) ≥ 1] ·

√
VarT (I) to recover

Pr
[
1 [VarT (I) ≥ 1] ·

√
VarT ≥

√
2k−1

]
≤ min

{
E
[
1[VarT (I)≥1]·

√
VarT (I)

]
√
2k−1

, 1

}
.

Fact 5.6. The exponentially weighted sum of probabilities that each epoch ends is at most

⌈log2(T )⌉+2∑
k=2

√
2k−1 Pr[τk−1 <∞] ≤ (2

√
2 + 2)E

[
1 [VarT (I) ≥ 1] ·

√
VarT (I)

]
.

Proof. We will prove the deterministic inequality

⌈log2(T )⌉+2∑
k=2

√
2k−1 · 1 [τk−1 <∞] ≤ (2

√
2 + 2)1 [VarT (I) ≥ 1] ·

√
VarT (I);

the fact follows from taking an expectation on both sides.
Let K = max {k | τk <∞} be the number of completed epochs. When K = 0, we have

VarT (I) < 1, and both sides of the above reduce to 0. Now, suppose that K ≥ 1, in which case we
have VarT (I) ≥ 1. By telescoping, we can lower bound the realized variance by

VarT (I) ≥
K∑
k=1

2k−1 ≥ 2K−1.
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Separately, by definition of K, we have

⌈log2(T )⌉+2∑
k=2

√
2k−1 · 1 [τk−1 <∞] =

K+1∑
k=2

√
2k−1

= 1 [VarT (I) ≥ 1]
K+1∑
k=2

√
2k−1

≤ 1 [VarT (I) ≥ 1]
√
2K(
√
2 + 2)

with the second equality following from VarT (I) ≥ 1. Combining the previous two inequalities gives
the desired inequality

⌈log2(T )⌉+2∑
k=2

√
2k−1 · 1 [τk−1 <∞] ≤ (2

√
2 + 2)1 [VarT (I) ≥ 1] ·

√
VarT (I).

C.3 Random Walks with Early Stopping

We now prove a technical result that the magnitude of a random walk with random variance can
be upper bounded by its (expected) standard deviation. Compared to Lemma 5.2, the lemma
below gives a bound that depends on γ(VarT (I)) (rather than the square root), and avoids the
extra log |G| · log T term. While the leading factor (≈ log |G|) is larger than the one in Lemma 5.2
(≈
√

log |G|), we will only apply the bound to the case that |G| = O(1), where the difference between
the two is only a constant factor.

Lemma 5.8. Given a function f : [0, 1] → [−1, 1], y ∈ {0, 1}T , and set I ⊆ [0, 1], consider
the martingale Mt(f, y, I) :=

∑t
s=1 yt · f(p⋆s) · (xs − p⋆s) · 1 [p⋆s ∈ I], where x ∼ D, and p⋆t =

Prx′∼D

[
x′t = 1|x′1:(t−1) = x1:(t−1)

]
. Then, for any finite family G of functions from [0, 1] to [−1, 1],

any y ∈ {0, 1}T , and any I ⊆ [0, 1], we have

E
x∼D

[
max
f∈G

MT (f, y, I)
]
≤ 8
(
6 + log(|G|)

)
E

x∼D
[γ(VarT (I))] .

where Vart(I) :=
∑t

s=1 p
⋆
s(1 − p⋆s) · 1 [p⋆s ∈ I] is the realized variance restricted to subset I, and

γ(x) := x if x < 1, and otherwise γ(x) :=
√
x.

Proof. Let us decompose the horizon into epochs of doubling realized variance with respect to the
subset I as per Definition 5.3. Using τ as defined in (3), we will write Ik := [τk−1 + 1 : min {T, τk}]
to denote the time steps composing epoch k and write K := max {k | τk <∞} to denote the number
of completed epochs.

We will separately handle the contributions of epoch 1 and those of later epochs.

First epoch. Since yt ∈ {0, 1} and ∥f∥∞ ≤ 1 holds for every f ∈ G, we can bound the expected
contribution from the first epoch as follows:

E
x∼D

[
max
f∈G

τ1∑
t=1

yt · f(p⋆t ) · (xt − p⋆t ) · 1 [p⋆t ∈ I]

]
≤ E

x∼D

[
τ1∑
t=1

|xt − p⋆t | · 1 [p⋆t ∈ I]

]
. (10)
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Note that for any p ∈ [0, 1] and Bernoulli random variable x ∼ Bernoulli(p),

E [|x− p|] = Pr [x = 0] · |0− p|+ Pr [x = 1] · |1− p| = 2p(1− p).

It thus follows that the process (Xt)0≤t≤T where

Xt :=
t∑

s=1

[|xs − p⋆s| − 2p⋆s(1− p⋆s)] · 1 [p⋆s ∈ I]

is a martingale, as conditioning on any realization of x1:(t−1), we have

E
x∼D

[|xt − p⋆t | − 2p⋆t (1− p⋆t ) | x1:t−1] = E
x∼Bernoulli(p⋆t )

[|x− p⋆t |]− 2p⋆t (1− p⋆t ) = 0.

By the optional stopping theorem, we have

E
x∼D

[
τ1∑
t=1

[|xt − p⋆t | − 2p⋆t (1− p⋆t )] · 1 [p⋆t ∈ I]

]
= E [Xτ1 ] = 0.

Plugging this identity into (10) gives

E
x∼D

[
max
f∈G

τ1∑
t=1

yt · f(p⋆t ) · (xt − p⋆t ) · 1 [p⋆t ∈ I]

]
≤ E

x∼D

[
τ1∑
t=1

2p⋆t (1− p⋆t ) · 1 [p⋆t ∈ I]

]
= 2 E

x∼D
[Varτ1(I)]

≤ 2 E
x∼D

[min {2,VarT (I)}]

≤ 4 E
x∼D

[min {1,VarT (I)}] ,

(11)

where the third step applies Fact C.1 with k = 1.

Later epochs. Applying a triangle inequality and the law of total expectation gives

E
x∼D

[
max
f∈G

T∑
t=τ1+1

yt · f(p⋆t ) · (xt − p⋆t ) · 1 [p⋆t ∈ I]

]

= E
x∼D

max
f∈G

K+1∑
k=2

∑
t∈Ik

yt · f(p⋆t ) · (xt − p⋆t ) · 1 [p⋆t ∈ I]


≤ E

x∼D

K+1∑
k=2

max
f∈G

∑
t∈Ik

yt · f(p⋆t ) · (xt − p⋆t ) · 1 [p⋆t ∈ I]


=

⌈log2(T )⌉+2∑
k=2

E
x∼D

[
max
f∈G

T∑
t=1

yt · f(p⋆t ) · (xt − p⋆t ) · 1 [p⋆t ∈ I ∧ t ∈ Ik]

]

=

⌈log2(T )⌉+2∑
k=2

Pr [τk−1 <∞] · E
x∼D

[
max
f∈G

Mk,f
T | τk−1 <∞

]
,

(12)
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where we define the process

Mk,f
T :=

T∑
t=1

yt · f(p⋆t ) · (xt − p⋆t ) · 1 [p⋆t ∈ I ∧ t ∈ Ik] . (13)

In the above, the third step uses Fact 5.4, namely that τ⌈log2(T )⌉+2 =∞. We can use Freedman’s
inequality to obtain a maximal inequality for each of these Mk,f

T processes.

Fact 5.5. For every y ∈ {0, 1}T and k ≥ 2, we can uniformly bound the process Mk,f
T defined in

(13) over a finite class G of functions from [0, 1] to [−1, 1] by

E
x∼D

[
max
f∈G

Mk,f
T | τk−1 <∞

]
≤
√
2k−1(2 + 2

√
log |G|) + 2 + 2 log |G| .

Applying Fact 5.5 to each of the martingales Mk,f
T in (12) gives us

E
x∼D

[
max
f∈G

T∑
t=τ1+1

yt · f(p⋆t ) · (xt − p⋆t ) · 1 [p⋆t ∈ I]

]

≤
⌈log2(T )⌉+2∑

k=2

Pr [τk−1 <∞] (
√
2k−1(2 + 2

√
log |G|) + 2 + 2 log |G|). (14)

To upper bound the right-hand side above, we use Fact 5.6 to bound

⌈log2(T )⌉+2∑
k=2

Pr [τk−1 <∞]
√
2k−1 ≤ E

[
1 [VarT (I) ≥ 1] ·

√
VarT (I)

]
(2 + 2

√
2),

and use Fact C.2 to bound

⌈log2(T )⌉+2∑
k=2

Pr [τk−1 <∞] ≤
⌈log2(T )⌉+2∑

k=2

min

1,
E
[
1 [VarT (I) ≥ 1] ·

√
VarT (I)

]
2(k−2)/2


≤ E

[
1 [VarT (I) ≥ 1] ·

√
VarT (I)

]
(2 +

√
2).

Plugging these into (14) gives

E
[
max
f∈G

[MT (f, y, I)−Mτ1(f, y, I)]
]

≤ E
[
1 [VarT (I) ≥ 1] ·

√
VarT (I)

]
(2 + 2

√
2)(2 + 2

√
log |G|+

√
2 +
√
2log |G|)

≤ E
[
1 [VarT (I) ≥ 1] ·

√
VarT (I)

]
8
(
5 + log |G|

)
. (15)

51



Combine bounds. Combining (11) and (15) and recalling the definition of γ, we recover our main
claim

E
x∼D

[
max
f∈G

MT (f, y, I)
]

≤ E
x∼D

[
max
f∈G

Mτ1(f, y, I)
]
+ E

x∼D

[
max
f∈G

MT (f, y, I)−Mτ1(f, y, I)
]

≤ 4 E
x∼D

[min {1,VarT (I)}] + 8
(
5 + log |G|

)
·E
[
1 [VarT (I) ≥ 1]

√
VarT (I)

]
≤ 4 E

x∼D
[γ(VarT (I))] + 8

(
5 + log |G|

)
· E
x∼D

[γ(VarT (I))]

≤ 8 · (6 + log |G|) · E
x∼D

[γ(VarT (I))] .

The second step above applies Inequalities (11) and (15). The third holds since min{1, x} ≤ γ(x)
and 1 [x ≥ 1]

√
x ≤ γ(x) hold for all x ≥ 0.

Let us recall Freedman’s inequality [Fre75].

Lemma C.3. Consider a martingale Mn ∼ D with filtration (Ft) where |Mt −Mt−1| ≤ 1 for all
t ∈ [n]. For all x, y > 0, we have the following high-probability bound on Mn:

Pr

[
∃n,Mn ≥ x ∧

n∑
t=1

E
[
(Mt −Mt−1)

2 |Ft−1

]
≤ y

]
≤ exp

(
− x2

2(x+ y)

)
.

We now prove Fact 5.5.

Fact 5.5. For every y ∈ {0, 1}T and k ≥ 2, we can uniformly bound the process Mk,f
T defined in

(13) over a finite class G of functions from [0, 1] to [−1, 1] by

E
x∼D

[
max
f∈G

Mk,f
T | τk−1 <∞

]
≤
√
2k−1(2 + 2

√
log |G|) + 2 + 2 log |G| .

Proof. Fix any f ∈ G. For t /∈ Ik, we have trivially that for any x1:t−1 ∈ {0, 1}t−1:

E
x′∼D

[
yt · f(p⋆t ) · (x′t − p⋆t ) · 1 [t ∈ Ik ∧ p⋆t ∈ I] | x′1:t−1 = x1:t−1

]
= 0.

For t ∈ Ik, since 1 [τk−1 <∞] and p⋆t is measurable by x1:t−1, we again have that

E
x′∼D

[
yt · f(p⋆t ) · (xt − p⋆t ) · 1 [t ∈ Ik ∧ p⋆t ∈ I] | x′1:t−1 = x1:t−1

]
= yt · f(p⋆t ) · 1 [t ∈ Ik ∧ p∗t ∈ I] ·

(
E

x′∼D

[
x′t | x′1:t−1 = x1:t−1

]
− p⋆t

)
= 0.

This means that Mk,f
T is a martingale even conditioned on the event that τk−1 <∞.
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Our construction of epoch k in (3) further guarantees that the realized variance of Mk,f
T is

deterministically upper bounded by Varτk(I)−Varτk−1
(I) ≤ 2k−1 + 1 (Fact C.1). Thus,

2k−1 + 1 ≥
T∑
t=1

p⋆t (1− p⋆t ) · 1 [t ∈ Ik ∧ p⋆t ∈ I]

=
T∑
t=1

E
x∼Bernoulli(p⋆t )

[
(x− p⋆t )

2
]
· 1 [t ∈ Ik ∧ p⋆t ∈ I]

=
T∑
t=1

E
x′
t∼Dt

[
(x′t − p⋆t )

2 | x′1:t−1 = x1:t−1

]
· 1 [t ∈ Ik ∧ p⋆t ∈ I]

2

≥
T∑
t=1

y2t · f(p⋆t )2 · E
x′
t∼Dt

[
(x′t − p⋆t )

2 | x′1:t−1 = x1:t−1

]
· 1 [t ∈ Ik ∧ p⋆t ∈ I]

2

=
T∑
t=1

E
x′
t∼Dt

[
(Mk,f

t −Mk,f
t−1)

2 | x′1:t−1 = x1:t−1

]
. (16)

where the first equality uses the definition of a Bernoulli’s variance; the second equality uses that,
conditioned on Ft−1, xt ∼ Bernoulli(p⋆t ); and the second inequality uses that y2t ≤ 1 and |f(x)| ≤ 1
for all x ∈ [0, 1].

We can thus use Freedman’s inequality to bound the deviation of each martingale Mk,f
T . First,

observe that the quadratic formula gives the inequality exp
(
− x2

2(x+y)

)
≤ p if x ≥ log(1/p) +√

log2(p) + 2y log(1/p). We can therefore invoke Lemma C.3 with y = 2k−1 + 1 and

x = 2 log(1/p) +
√
2y log(1/p) ≥ log(1/p) +

√
log2(p) + 2y log(1/p)

to show that

p ≥ Pr

[
Mk,f

T ≥ x ∧
T∑
t=1

E
x′
t∼Dt

[
(Mk,f

t −Mk,f
t−1)

2 | x′1:t−1 = x1:t−1

]
≤ 2k−1 + 1 | τk−1 <∞

]
.

Applying (16), we can simplify this to

p ≥ Pr

[
Mk,f

T ≥
√

2(2k−1 + 1) log(1/p) + 2 log(1/p) | τk−1 <∞
]

≥ Pr

[
Mk,f

T ≥
√

2k+1 log(1/p) + 2 log(1/p) | τk−1 <∞
]
.

We can then take a union bound over G for

p ≥ Pr

[
max
f∈G

Mk,f
T ≥

√
2k+1 log(|G| /p) + 2 log(|G| /p) | τk−1 <∞

]
.

Using the layer cake representation of expectation, we can convert this high-probability bound into

53



the expectation bound through a change of variables

E
[
max
f∈G

Mk,f
T | τk−1 <∞

]
=

∫ ∞

0
Pr

[
max
f∈G

Mk,f
T ≥ t | τk−1 <∞

]
dt

=

∫ 1

0

√
2k+1 log(|G| /p) + 2 log(|G| /p) dp

=
√
2k+1( |G|2

√
π · erfc(

√
log |G|) +

√
log |G|) + 2 + 2 log |G| ,

where the last equality follows by Fact C.4. When |G| > 1, we can compute the integral to be

E
[
max
f∈G

Mk,f
T | τk−1 <∞

]
≤
√
2k+1( |G|

2
√

log|G|
exp(− log |G|) +

√
log |G|) + 2 + 2 log |G|

≤
√
2k−1(2 + 2

√
log |G|) + 2 + 2 log |G| ,

where the first inequality uses that erfc(z) < exp(−z2)
z
√
π

. When |G| = 1, we again have

E
[
max
f∈G

Mk,f
T | τk−1 <∞

]
≤
√
π
√
2k−1 + 2

≤
√
2k−1(2 + 2

√
log |G|) + 2 + 2 log |G| .

Fact C.4. For k, n ∈ Z+, the following integral equality holds∫ 1

0

√
2k+1 log(n/p) + 2 log(n/p) dp =

√
2k+1(n2

√
π · erfc(

√
log n) +

√
log n) + 2 + 2 log n

where erfc denotes the complementary error function.

Proof. Let us first separate the integral into two parts:∫ 1

0

√
2k+1 log(n/p) + 2 log(n/p) dp =

∫ 1

0

√
2k+1 log(n/p) dp+

∫ 1

0
2 log(n/p) dp.

We can bound the second integral easily. Since log(n/p) = log n− log p,∫ 1

0
2 log(n/p) dp =

∫ 1

0
2(log n− log p) dp

= 2 log n

∫ 1

0
dp− 2

∫ 1

0
log p dp

= 2 log n+ 2 (17)

Now we consider the first integral. Let u = log(n/p). Then p = ne−u and dp = −ne−u du.
When p = 1, u = log n. When p = 0, u goes to ∞. Thus, the integral becomes:∫ 1

0

√
2k+1 log(n/p) dp =

∫ logn

∞

√
2k+1u · (−ne−u) du

= n
√
2k+1

∫ ∞

logn

√
u e−u du.
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The integral involving the error function erfc(x) can be recognized:∫ ∞

logn

√
u e−u du = −

√
u e−u

∣∣∞
logn

+

∫ ∞

logn

1

2
√
u
e−u du

= lim
u→∞

(
−
√
u e−u

)
−
(
−
√

log n e− logn
)
+

∫ ∞

logn

1

2
√
u
e−u du

=
√

log n e− logn +

∫ ∞

logn

1

2
√
u
e−u du

=
√
log n e− logn +

∫ ∞

√
logn

e−t2 dt

=

√
log n

n
+

√
π

2
erfc(

√
log n).

Thus, the integral
∫ 1
0

√
2k+1 log(n/p) dp is given by

n
√
2k+1

(√
π

2
erfc(

√
log n) +

√
log n

n

)
=
√
2k+1

(
n
√
π

2
erfc(

√
log n) +

√
log n

)
. (18)

Summing (17) and (18) gives the claim.

D Supplemental Materials for Section 6

D.1 Proof of Lemma 6.4

Now we prove Lemma 6.4, which we restate below.

Lemma 6.4. For the constant c = 1− 1/e, E
[
1
[
NBj ≥ 1

]
− c · 1 [bj <∞]

∣∣∣ Fbj−1

]
≥ 0.

Proof. We first show that for all t ∈ [T ], we have Pr [nt = 1 | Ft−1] ≥ p⋆t (1− p⋆t ), where Ft−1 denotes
the filtration generated by all the randomness up to time t− 1. Note that conditioning on Ft−1, xt
is distributed according to Bernoulli(p⋆t ). If the forecaster chooses pt ≥ 1

2 , the condition |xt − pt| ≥ 1
2

holds when xt = 0, which happens with probability 1− p⋆t ; otherwise it holds when xt = 1, which
happens with probability p⋆t . Therefore, regardless of the choice of pt, we have

Pr [nt = 1 | Ft−1] = Pr
xt∼Bernoulli(p⋆t )

[|xt − pt| ≥ 1/2] ≥ min{p⋆t , 1− p⋆t } ≥ p⋆t (1− p⋆t ).

This allows us to invoke Lemma D.1 with qt := nt, rt := p⋆t (1− p⋆t ), and θ = 1, where we only
consider the random process inside block Bj . In this context, the stopping time τ1 corresponds to
the end of the block, i.e., bj . Therefore, by applying Lemma D.1 at time step bj−1, we obtain

Abj−1
= Pr

[
NBj ≥ 1

∣∣∣ Fbj−1

]
−
(
1− e−1

)
· Pr

[
bj <∞ | Fbj−1

]
≥ 0

⇐⇒ E
[
1
[
NBj ≥ 1

]
− c · 1 [bj <∞]

∣∣∣ Fbj−1

]
≥ 0, where c = 1− 1

e
.
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D.2 Proof of Lemma 6.8

Lemma 6.8. (Lower bound on ÑT0) For the first epoch, we have E
[√

ÑT0

]
≥ 1

4 E [VarT · 1 [τ1 =∞]].

Proof of Lemma 6.8. Invoking Lemma D.2 with qt := nt, rt := p⋆t (1− p⋆t ), and the stopping time τ
as the earlier time step between the end of block B1 and the first time where nt = 1, we have

Pr [Nτ ≥ 1] ≥ 1− E
[
e−Varτ

]
≥ 1

2
E [Varτ ] ,

where the last step again uses 1−e−x ≥ x/2 for x ∈ [0, 5/4]. Moreover, since 5
4 ·1 [Nτ ≥ 1] ≥ Varτ :b1 ,

we also have

Pr [Nτ ≥ 1] ≥ 4

5
E [Varτ :b1 ] ≥

1

2
E [Varτ :b1 ] .

Combining the two inequalities, we obtain

E
[√

ÑT0

]
= Pr [NB1 ≥ 1] ≥ Pr [Nτ ≥ 1]

≥ 1

4
E [Varτ +Varτ :b1 ] =

1

4
E [VarB1 ]

≥ 1

4
E [VarT · 1 [τ1 =∞]] . (τ1 =∞ =⇒ VarT = VarB1)

The proof is thus complete.

D.3 Auxiliary Lemmas

Lemma D.1. Let Qt =
∑

s≤t qs, Rt =
∑

s≤t rs be two (coupled) stochastic processes such that
qt ∈ {0, 1}, rt ∈ [0, 1] for all t ∈ [T ]. Let Ft denote the filtration generated by all the randomness up
to time t. Suppose rt is a deterministic function on Ft−1, and st := Pr [qt = 1 | Ft−1] ≥ rt.

For any constant θ > 0, define τθ to be a stopping time chosen as the first time that Rt reaches
θ, i.e.,

τθ := min{∞} ∪ {t ∈ [T ] | Rt ≥ θ}.
Let Q+

t := Qt:τθ be the sum of qs in the future until the stopping time τθ. If t > τθ, then we let
Q+

t := 0. Consider random variables At’s defined on the filtration Ft as follows:

At := Pr
[
Q+

t ≥ 1
∣∣∣ Ft

]
−
(
1− e−(θ−Rt)

)
· Pr [τθ <∞ | Ft] .

Then we have At ≥ 0 for every t ≤ T and every event in Ft.

Proof of Lemma D.1. It suffices to prove the inequality conditioning on events in Ft that are “atomic”
in the sense that they uniquely determine the values of q1:t and r1:t. The general case would follow
from the law of total probability. In particular, in the following proof, we may view the value of Rt

as fixed when we analyze the quantity At.
We perform a backwards induction from t = T to t = 0. Consider the base case of t = T . If

RT ≥ θ, we have

AT = Pr
[
Q+

T ≥ 1
∣∣∣ FT

]
︸ ︷︷ ︸

=0

−
(
1− e−(θ−RT )

)
︸ ︷︷ ︸

≤0

·Pr [τθ <∞ | FT ] ≥ 0.
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Otherwise when RT < θ, we have Pr [τθ <∞ | FT ] = 0, which also implies AT = 0 ≥ 0.
We then assume At ≥ 0, and show that the same holds for At−1, where t ≤ T . If Rt−1 ≥ θ, we

clearly have At−1 ≥ 0, as the factor −
(
1− e−(θ−Rt−1)

)
would be non-negative. Therefore, it suffices

to consider the case that Rt−1 < θ. In this case, the stopping time τθ should be ≥ t, so we have
Q+

t−1 = qt +Q+
t . We bound At−1 by breaking the event Q+

t−1 ≥ 1 into two cases: either qt = 1, or
qt = 0 but Q+

t ≥ 1. We have

Pr
[
Q+

t−1 ≥ 1
∣∣∣ Ft−1

]
= Pr [qt = 1 | Ft−1] + Pr [qt = 0 | Ft−1] · Pr

[
Q+

t ≥ 1 | Ft−1, qt = 0
]

= st + (1− st)E
[
Pr
[
Q+

t ≥ 1 | Ft

] ∣∣∣ Ft−1, qt = 0
]

For the second term, we apply the induction hypothesis of At ≥ 0 and get

E
[
Pr
[
Q+

t ≥ 1 | Ft

] ∣∣∣ Ft−1, qt = 0
]
≥ E

[(
1− e−(θ−Rt)

)
· Pr [τθ <∞ | Ft]

∣∣∣ Ft−1, qt = 0
]

=
(
1− e−(θ−Rt−1−rt)

)
· Pr [τθ <∞ | Ft−1, qt = 0] ,

where the second step uses the fact that conditioning on Ft−1, Rt = Rt−1+ rt. As a result, we obtain

Pr
[
Q+

t−1 ≥ 1
∣∣∣ Ft−1

]
≥ st + (1− st)

(
1− e−(θ−Rt−1−rt)

)
· Pr [τθ <∞ | Ft−1, qt = 0] . (19)

We also expand the conditional probability Pr [τθ <∞ | Ft−1] as follows:

Pr [τθ <∞ | Ft−1] = st · Pr [τθ <∞ | Ft−1, qt = 1] + (1− st) Pr [τθ <∞ | Ft−1, qt = 0]

≤ st + (1− st) Pr [τθ <∞ | Ft−1, qt = 0] (20)

Combining the bounds in (19) and (20), we obtain

At−1 ≥ st + (1− st)
(
1− e−(θ−Rt−1−rt)

)
· Pr [τθ <∞ | Ft−1, qt = 0]

−
(
1− e−(θ−Rt−1)

)
·
(
st + (1− st) Pr [τθ <∞ | Ft−1, qt = 0]

)
= st · e−(θ−Rt−1) + (1− st) ·

(
e−(θ−Rt−1) − e−(θ−Rt−1−rt)

)
· Pr [τθ <∞ | Ft−1, qt = 0]

≥ e−(θ−Rt−1) · (st · ert + 1− ert) (bounding the probability by 1)

≥ e−(θ−Rt−1) · (rt · ert + 1− ert) (st ≥ rt from assumption)

= e−(θ−Rt−1)+rt · (rt + e−rt − 1) ≥ 0. (∀x, e−x ≥ 1− x)

We have thus proved that the claim also holds for t− 1. This completes the induction.

Lemma D.2. Let Qt =
∑

s≤t qs, Rt =
∑

s≤t rs be two (coupled) stochastic processes such that
qt ∈ {0, 1}, rt ∈ [0, 1] for all t ∈ [T ]. Let Ft denote the filtration generated by all the randomness up
to time t. Suppose rt is a deterministic function on Ft−1, and st := Pr [qt = 1 | Ft−1] ≥ rt.

For any constant θ > 0, define τ to be a stopping time chosen as the first time that either Rt

reaches 1 or qt = 1, i.e.,

τ := min{∞} ∪ {t ∈ [T ] | Rt ≥ 1} ∪ {t ∈ [T ] | qt = 1}.

57



Let Q+
t := Qt:τ and R+

t := Qt:τ be the sum of qs and rs in the future until the stopping time τ ,
respectively. We also let Q+

t = R+
t = 0 when t > τ . Consider random variables At’s defined on the

filtration Ft as follows:

At := Pr
[
Q+

t ≥ 1
∣∣∣ Ft

]
− E

[
1− e−R+

t

∣∣∣ Ft

]
.

Then we have At ≥ 0 for every t ≤ T and every event in Ft.

Proof of Lemma D.2. Using a similar approach to that for Lemma D.1, we prove this claim via a
backwards induction from t = T to t = 0. Again, we only consider the “atomic” events in Ft that
uniquely determines the values of q1:t and r1:t, and thus whether τ ≤ t; the general case follows from
the law of total probability.

For the base case of t = T , we have

AT = Pr
[
Q+

T ≥ 1
∣∣∣ FT

]
︸ ︷︷ ︸

=0 as Q+
T≡0

+E
[
e−R+

T

∣∣∣ FT

]
︸ ︷︷ ︸

=1 as R+
T ≡0

−1 = 0.

Now for t ≤ T , we assume the claim holds for t and analyze At−1. If τ ≤ t − 1, we immediately
obtain At−1 ≥ 0 since Q+

t−1 = R+
t−1 = 0. It remains to consider the case of τ ≥ t. For the first term

of At−1 (the conditional probability), we have

Pr
[
Q+

t−1 ≥ 1
∣∣∣ Ft−1

]
= Pr

[
qt = 1

∣∣∣ Ft−1

]
+ Pr [qt = 0 | Ft−1] · Pr

[
Q+

t ≥ 1 | Ft−1, qt = 0
]

= st + (1− st) Pr
[
Q+

t ≥ 1
∣∣∣ Ft−1, qt = 0

]
≥ st + (1− st) · E

[
1− e−R+

t

∣∣∣ Ft−1, qt = 0
]

= 1− (1− st) · E
[
e−R+

t

∣∣∣ Ft−1, qt = 0
]
,

where the inequality step follows from the induction hypothesis At ≥ 0.
On the other hand, the second term of At−1 (the conditional expectation) can be bounded as

E
[
1− e−R+

t−1

∣∣∣ Ft−1

]
= Pr

[
qt = 1

∣∣∣ Ft−1

]
·
(
1− e−rt

)
(qt = 1 implies τ = t and R+

t−1 = rt)

+ Pr
[
qt = 0

∣∣∣ Ft−1

]
· E
[
1− e−rt−R+

t

∣∣∣ Ft−1, qt = 0
]

= 1− st · e−rt − (1− st) · E
[
e−rt−R+

t

∣∣∣ Ft−1, qt = 0
]

≥ 1− E
[
e−rt−(1−st)R

+
t

∣∣∣ Ft−1, qt = 0
]
. (Jensen’s inequality for the convex function e−x)

58



Finally, combining the bounds for both terms of At−1, we obtain

At−1 = Pr
[
Q+

t−1 ≥ 1
∣∣∣ Ft−1

]
− E

[
1− e−R+

t−1

∣∣∣ Ft−1

]
≥ E

[
e−rt−(1−st)R

+
t − (1− st) · e−R+

t

∣∣∣ Ft−1, qt = 0
]

≥ E
[
e−R+

t ·
(
e−rt − (1− st)

) ∣∣∣ Ft−1, qt = 0
]

(estR
+
t ≥ 1)

≥ E
[
e−R+

t ·
(
e−st − (1− st)

) ∣∣∣ Ft−1, qt = 0
]

(st ≥ rt by assumption)

≥ 0. (e−x ≥ 1− x, ∀x ≥ 0)

We have proved that At−1 ≥ 0. As a result, At ≥ 0 for all t ≤ T and all events in Ft.
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