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Abstract

We study the problem of training a principal in a multi-agent
general-sum game using reinforcement learning (RL). Learn-
ing a robust principal policy requires anticipating the worst
possible strategic responses of other agents, which is gener-
ally NP-hard. However, we show that no-regret dynamics can
identify these worst-case responses in poly-time in smooth
games. We propose a framework that uses this policy evalua-
tion method for efficiently learning a robust principal policy
using RL. This framework can be extended to provide ro-
bustness to boundedly rational agents too. Our motivating
application is automated mechanism design: we empirically
demonstrate our framework learns robust mechanisms in both
matrix games and complex spatiotemporal games. In particu-
lar, we learn a dynamic tax policy that improves the welfare
of a simulated trade-and-barter economy by 15%, even when
facing previously unseen boundedly rational RL taxpayers.

1 Introduction

We study the problem of learning a principal policy in a
general-sum game against boundedly rational agents. Learn-
ing a robust principal policy requires us to anticipate how
these agents may respond to our policy choices, and entails
two important challenges (Figure 1). First, the policies we
choose induce a sub-game between the other agents, a sub-
game which may have infinite equilibria. The policy we
choose should perform well regardless of which equilibria the
agents respond with. Second, principal policies that perform
well against rational agents may not generalize to boundedly
rational agents, even if they are only infinitesimally irrational
(Pita et al. 2010). Our policy should perform well even if
agents act boundedly rational.

We introduce a framework for the reinforcement learning
of robust principal policies that address these two challenges.
This framework evaluates a potential policy by identifying the
worst-case coarse-correlated equilibrium (CCE) of the sub-
game the policy induces. Although identifying worst-case
CCE is generally computationally intractable (Papadimitriou
and Roughgarden 2008; Barman and Ligett 2015), we prove
that worst-case CCE can efficiently learned in smooth games.
Our framework easily extends to identify worst-case approxi-
mate CCE. This allows us to learn principal policies that are
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Figure 1: The orange robot denotes our principal, blue robots
the agents we train against, and human icons the agents we
encounter during test time. Evaluating a policy in a multi-
agent game by naively sampling rational responses from other
agents, e.g. via multi-agent RL, may lead to overly optimistic
reward estimates. We introduce efficient algorithms for adver-
sarially sampling rational responses in smooth games. These
algorithms can be extended to sample worst-case boundedly
rational responses (bottom-right).

robust to boundedly rational agents, such as agents whose
incentives differ from the agents we train against.

Our motivating application is mechanism design (“reverse
game theory”), where a principal implements the rewards
and dynamics (the “mechanism”) that other agents optimize
for (Myerson 2016). Traditional mechanism design has been
limited to problems with a convenient mathematical structure,
e.g., simple auctions, where the equilibria behavior of agents
can be solved in closed-form. Recent research have pursued
computational approaches to mechanism design that evaluate
potential mechanisms using agent-based modeling (Holland
and Miller 1991; Bonabeau 2002; Duetting et al. 2019) and
multi-agent reinforcement learning (MARL) (Zheng et al.
2020). This application of multi-agent learning remains an
exciting but understudied topic. We will outline a modern
perspective that formalizes automated mechanism design and
its robustness concerns as an equilibrium selection problem.

Summary of results.

1. We motivate a robust learning objective for finding a prin-
cipal policy that is robust to agents of differing incentives,



bounded rationality, and reputation. This objective is a
multi-follower extension of robust Stackelberg games.

2. We show the existence of poly-time algorithms for adver-
sarially sampling the coarse-correlated-equilibria (CCE)
of smooth games, proving that multi-follower Stackelberg
games can be tractable. This weakens prior findings that
learning welfare-maximizing CCE is NP-hard (Papadim-
itriou and Roughgarden 2008).

3. We apply our proposed framework to automated mecha-
nism design problems where multi-agent RL is used to
simulate the outcomes of mechanisms. In the spatiotem-
poral economic simulations used by the AI Economist
(Zheng et al. 2020), our framework learns robust tax poli-
cies that improve welfare by up to 15% and are robust to
previously unseen and boundedly rational agents.

2 Related Work

Finding Equilibria. A goal of multi-agent learning is find-
ing equilibria (or more generally solution concepts), i.e., sets
of agent policies that are game-theoretically optimal (accord-
ing to the definition of equilibrium). Prior work has used
gradient-based methods, e.g., deep reinforcement learning,
to find (approximate) equilibria with great success in multi-
player games such as Diplomacy (Gray et al. 2021) and in
training Generative Adversarial Networks (Schifer, Zheng,
and Anandkumar 2020). However, learning robust principals
(or mechanisms) in multi-agent general-sum games is an open
problem: it requires evaluating strategies against worst-case
sub-game equilibria, which is computationally hard.

Stackelberg Games. Our principal can be seen as a Stackel-
berg leader; the other agents as Stackelberg followers. Stack-
elberg games have had real-world success in security games
used in airports (Pita et al. 2009) and anti-poaching defense
(Nguyen et al. 2016), for example. However, Stackelberg
analysis is typically limited to a single rational follower or
assuming that the followers do not strategically interact, e.g.,
as in multi-follower security games (Korzhyk, Conitzer, and
Parr 2011). In contrast, we consider more general settings
with multiple followers who may strategically interact with
one another. In these settings, finding multi-follower “best-
responses” is a computationally hard equilibria search and an
open problem (Barman and Ligett 2015; Basilico et al. 2020)
for which our work provides a tractable perspective.

Our approach to modeling uncertainty about followers
is inspired by Strict Uncertainty Stackelberg Games that
assume a worst-case choice of a follower’s utility function
(Pita et al. 2010, 2012; Kiekintveld, Islam, and Kreinovich
2013). Similarly, Bayesian Stackelberg Games assume a prior
over a space of possible follower utility functions (Conitzer
and Sandholm 2006). We extend this by considering a general
setting with multiple, possibly interacting, followers.

Robustness. Our work is also related in spirit to prior work
on robust reinforcement learning, which we discuss further
in Appendix C. We will refer to our notion of robustness as
strategic robustness to contrast it from non-game-theoretic
notions of robustness to, for example, noisy observations
(Morimoto and Doya 2000). Strategic robustness also differs

from the topic of “robust game theory”, which studies the
equilibria that arise when all players act robustly to some
uncertainty about game parameters (Aghassi and Bertsimas
2006). Hereafter, we will simply refer to our notion of strate-
gic robustness as “robustness” for brevity.

3 Problem Formulation

Notation. Bold variables are vectors of size n, with each
component corresponding to an agent¢ = 1, ..., N. For ex-
ample, a € A;., denotes an action vector over all agents
except our principal, agent 0. a_; denotes the profile of ac-
tions chosen by all agents except agents 0 and i.

Setup. We consider a general-sum game G with V + 1
agents. Our principal, or “ego agent”, is index 7 = 0 and
the other agents are ¢ = 1,...,N. A; denotes the set of
m; actions available to agent i, and m = S~ |, m;. P(4;)
is the set of probability distributions over action set A;.
The joint action set is Ai., := Hie[l,...,N] A;. P(A1rg)
denotes the set of joint distributions over strategy profiles
Aj.. PP(Ay.,) denotes the set of product distributions
over strategy profiles A;.,,. Every agenti = 0,..., N has
a utility function u; : Ag X A, — R with bounded pay-
offs. For example, u;(ag, a) denotes the utility of agent ¢
under action ag € Ag by our principal and actions a € A

by agents 1,..., N. When qag is clear from context, we’ll
write u;(a), suppressing ag. We denote expected utility as
Ui (x0, ) = Egymmg,a~ati(ag, a); again we write u,(x)

when x is clear from context.

Succinct Games. To derive our complexity results, we will
use standard assumptions on our game G so that working with
equilibria is not trivially hard (Papadimitriou and Roughgar-
den 2008). We assume G := (I, T, U) is a succinct game, i.e.,
has a polynomial-size string representation. Here, I are effi-
ciently recognizable inputs, and 7" and U are polynomial algo-
rithms. 7" returns n, my, . .., my given inputs z € I, while
U specifies the utility function of each agent. We assume G
is of polynomial type, i.e., n,mg, ..., my are polynomial
bounded in |I|. We assume that G satisfies the polynomial
expectation property, i.e., utilities u(xo, x) can be computed
in polynomial time for product distributions «. The latter
assumption is known to hold for virtually all succinct games
of polynomial type (Papadimitriou and Roughgarden 2008).
Without these assumptions, simply evaluating the payoff of
a coarse-correlated equilibria can require exponential time.
All complexity results in our work, including Theorem 1
and cited results from prior works use these assumptions.
Later, we will use additional “smoothness” conditions on G
to overcome prior hardness results about succinct games.

Problem. Given a game G, we aim to learn a principal
policy zy € P(A;) that maximizes our principal’s expected
utility @o(xo, x). Here, x is the strategy that agents in a
test environment respond to our policy xy with. We will
assume access to a training environment for G. In this training
environment, we assume access to—potentially inaccurate—
estimates of the reward functions of the agents; we will write
these estimates as uj,...,uy. For example, the principal
¢ = 0 may be a policymaker setting a tax policy x( that



maximizes social welfare ug. In response, the tax-payers play
x, choosing whether to work and report income.

Objective In order to formalize our robust learning objec-
tive, we must define what uncertainty sets X we want learn-
ing guarantees for. A behavioral uncertainty set X (xzg) C
P(A) defines the strategies that the test environment agents
may respond to a principal policy zy with. For simple agent
behaviors, one can use imitation learning or domain knowl-
edge to construct these uncertainty sets. In this work, we will
study game-theoretic uncertainty sets, for example, where
X (x0) is the set of rational behaviors (see Section 4). Fixing
a choice of X, we can write our robust learning objective as:

max min ug(zg,x). 1
woxmeX(arU) O( 0 ) M

This is a challenging objective: it features nested optimiza-
tion and requires searching over behavioral uncertainty sets,
which is a non-trivial task in complicated games.

4 Finding Uncertainty Sets for Boundedly
Rational Agents

A key challenge in our problem formulation is defining our
behavioral uncertainty set X. In this section, we will first
argue for a uncertainty set of coarse-correlated equilibria
(CCE). We will then prove that in smooth games we can
efficiently approximate worst-case CCE. We will finally pro-
pose a more relaxed uncertainty set that yields robustness to
boundedly rational agents.

Initial Assumptions Our guiding principle for choosing X

is that a robust principal can assume that agents are rational,

but should still perform if agents act somewhat irrationally or

have incentives that slightly differ from anticipated. We will

further assume the following and relax them later.

1. The incentives (reward functions) of the test agents exactly
agree with our training environment’s estimates.

2. All agents are rational expected-utility maximizers. No
agent will settle if they want to unilaterally deviate.

3. We, the principal, can commit to a strategy zo and will
not react to other agents.

Dominant Strategies. A natural choice of X is to extend
Stackelberg equilibria to a multi-follower setting and define
X (z0) as the set of best responses to z,

X(xo)={x|Vie[l,...,n],2_;, € P(A)_; :
x; € argmax, U; (o, i, € i)} (2)
However, this set is only non-empty when all agents have

dominant strategies: a strong assumption that rarely holds
when followers interact with one another.

Stability-Based Equilibria. We can also define an uncer-
tainty set X (x) as the stable equilibria that agents may con-
verge to under our policy zq. This coincides with Equation 2
when it is non-empty. Formally, let

X (o) = {= € P(A) | (x0,2) € EQ},

where natural choices for EQ include mixed Nash equilibria
(MNE) in which agents do not coordinate:

MNE = {x € PP™Y(A) | Vi€ [1,...,N],a; € A; :
Eana[ui(a)] > Ea_ ~a_ [ui(ai, ai)]},
or more general coarse-correlated equilibria (CCE):
CCE={xecP(A)|Vie]l,...,N],a; € A; :
Bana[ui(@)] 2 EBa_na_, [ui(ai, ©—)]}.

Here, coarse-correlated equilibria describe more general joint
strategies, such as coordination based on shared information.

Computational Hardness. Unfortunately, optimizing the
robustness objective in Equation 1 is neither tractable with
MNE nor CCE. Finding the MNE/CCE that minimizes a
utility function ug is equivalent to the NP-hard problem of
finding a MNE/CCE that maximizes a linear social welfare
objective v (Daskalakis, Goldberg, and Papadimitriou 2009;
Papadimitriou and Roughgarden 2008); we will set v = —ug
for convenience. Beyond maximizing v, simply finding a
CCE that does not minimize v is NP-hard (Barman and Ligett
2015). Formally, consider the decision problem I'" of deter-
mining whether a game G (under our assumptions) admits a
CCE « such that the expectation of v, 7, satisfies:

v(x) > Jmin U(E).

This problem is NP-hard for some choices of v, including the
social welfare function (Barman and Ligett 2015). For our
purposes, this implies that even sampling an approximately
worst-case equilibria is intractable. This means it could be
impossible to efficiently evaluate our principal’s policy as
it is intractable to guarantee sampling anything other than
uninformative equilibria behavior.

Smooth Games and Tractable Uncertainty Sets
Smooth games offer a workaround to this hardness result.

Definition 4.1 (Smooth Games). A cost-minimization game
with cost functions ¢; and objective C' is (A, u)-smooth if,
for all strategies , ™ € P(A),

N
S Elei(af,2_)] < A-E[C(2")] + - E[C()].

i=1

The “robust price of anarchy” (RPOA) is defined p := 2

1—p*
In fact, we can sample a CCE that approximately maxi-
mizes v = —ug with run-time polynomial in the game size,

smoothness (Ag, i) of the original game G and the smooth-

ness (Ag, ) of a modified game G'. Here, G is identical to
G except each agent’s utility is changed from u; to v.

Theorem 1. For succinct n-agent m-action games of
polynomial type and expectation property, there exists a
Poly(1/e,n, m, p) algorithm that will find an e-CCE & with

— Y
v(r) > < —e
p
for any y < maxg-eccg 7(x*), where p = atc

I-max{pc,pua}”



Proof Sketch of Theorem 1. First, we observe that the prob-
lem of finding a v-maximizing CCE reduces to finding a
halfspace oracle that optimizes some modified social welfare
(Lemma 1). Similar reductions have been described by (Jiang
and Leyton-Brown 2011) and (Barman and Ligett 2015).

Lemma 1. Fix a0 < y < maxgeccg 7(«). Assume there is
a Poly(1/¢e, n, m)-time halfspace oracle that, given a vector
B € Rfm with non-negative components, returns an €
P(A) such that Sv(x) < 0, where

ﬂl(l,.’ll_l) — ﬂl(ﬂj)

ﬂ1(m1yw—.1) — ()
o) = 5 3)

ﬂN(l, QZ_N) — UN((L’)

ﬂN(mNy-'B—'N) —un(z)
L y —v(x) |

Then, there is a Poly(1/¢, n, m)-time algorithm that returns
an e-CCE x with7(x) > y —e.

The halfspace oracle’s optimization task can be reduced to
optimizing social welfare in a game with a RPOA of p, which
inherits its smoothness from games G and G. This upper
bounds the ratio between the smallest objective value v of a
CCE and the largest objective value v of any strategy. Thus,
we can use no-regret dynamics (Cesa-Bianchi and Lugosi
2006; Foster and Vohra 1997; Hart and Mas-Colell 2000) in
this smooth game to approximate the half-space oracle.

Lemma 2. Let p denote an upper bound on the price of
anarchy of G, G. There exists a Poly(1/e€, n, m, p)-time half-
space oracle that, given a vector 3 € Rf‘m and y <
pmaxgecce (), returns an & € P(A) such that fv(z) <
€ where v is defined as in Equation 3.

Combining Lemmas 1 and 2 constructs our algorithm. [

Informally, this theorem states that it is tractable to find
a CCE that maximizes v up to the price of anarchy. While
this relationship is immediate when v is the social welfare
function (Roughgarden 2015), our result shows that we can
prove a similar relationship concerning the optimization of
CCE against any linear function. This positive result allows
for translation between well-known price-of-anarchy bounds
and bounds on the tractability of CCE optimization.

Corollary 1. In linear congestion games, for any linear func-
tion v, we can find, in Poly(1/¢, n, m) time, an e-CCE @ such
that 7(x) > 0.4 - maxgecce V(x) — €.

While Barman and Ligett (2015) showed the decision prob-
lem T" of finding a non-trivial CCE is NP-hard in general, our
Theorem 1 also shows it is tractable in smooth games.

Corollary 2. The decision-problem I" is in P for games where

% mMaXgeCCE P(:c) > minmeCCE ﬁ(m)

Remarks. These theoretical conclusions suggest that al-
though using equilibria-based uncertainty sets may be in-
tractable in some cases, there is a broad class of common
problems where CCE uncertainty sets are reasonable and
allow for efficient adversarial sampling. The algorithm we
construct in Theorem 1 also enjoys two nice properties. First,
it only requires oracle access to utility functions (efficient
under polynomial expectation property). Second, in the algo-
rithm’s self-play subprocedures, each agent can be trained
using only their, and their principal’s, utility information.

Weakening Assumptions on Agents and Principal
Robustness Algorithm

We now further refine our choice of uncertainty set to ensure
generalization to agents that violate our behavioral assump-
tions. We now switch to weaker assumptions:

1. Subjective rationality: At test time, an agent’s utility
may differ from the anticipated utility u; (Simon 1976).
Many models of subjective rationality, such as Subjective
Utility Quantal Response (Nguyen et al. 2013), bound the
gap between w; and @; as ||u; — U;]jco < s With v > 0.

2. Procedural rationality: An agent may not fully succeed
in maximizing their utility (Simon 1976), e.g., they could
gain up to vy, > 0 utility if they unilaterally deviate.

3. Myopia: An agent may possess commitment power or
otherwise be non-myopic, factoring in long-term incen-
tives with a discount factor 7,, € (0, 1). This relates to
notions of exogenous commitment power, e.g., partial rep-
utation, in Stackelberg games (Kreps and Wilson 1982;
Fudenberg and Levine 1989).

These variations represent common forms of bounded ra-
tionality. We now show that the sampling scheme we devise
for Theorem 1 can be extended to maintain robustness despite
these weaker assumptions. We aim to learn strategies x( that
perform well even when presented with agents possessing
these variations. Hence, we aim to use uncertainty sets X
that encode such behaviors. The next proposition suggests
it suffices to simply relax our uncertainty set X to include
more approximate equilibria.

Proposition 1. The uncertainty set X’ of (any combina-
tion of) agents violating assumptions 1-3 with parameters
Ym Vs> Vp 18 contained in the set of e-CCE:

CCE. ={x e P(A)|Viel,...,N],a; € A; :
Ea~m[“i(a)] +e 2> Ea—i"/m—i[ui(ai? afi)]}V

where g; = max{%, s, 27p }. Hence, we can train poli-
cies robust to such agents by using the following in the ro-

bustness objective of Equation 1:
X (z9) ={x € P(A) | Jzp € Ap : (x0,x) € CCE.}.

This proposition motivates us to use approximate CCE
as an uncertainty set rather than exact CCEs. Conveniently,
the algorithm we construct in the proof of Theorem 1 can
be modified to adversarially sample from e-CCE instead of
exact CCE. By relaxation of Lemma 1, it yields the same
optimality and runtime guarantees as Theorem 1, but over the



set of approximate e-CCE. We will refer to this modification
of the Theorem 1 algorithm as Algorithm 2, which we repeat
in full in the Appendix.

5 Finding Approximate Uncertainty Sets with
Blackbox Optimizers

One challenge with using Algorithm 2 in practice is that it
relies on a no-regret learning subprocedure that does not scale
well. This is a common bottleneck in multi-agent learning
when deriving practical algorithms from algorithms with
strong theoretical guarantees. A common remedy is to replace
the no-regret learning procedure with a standard learning
algorithm (e.g., SGD), usually with no negative impact on
empirical behavior or performance. We will do exactly this
to derive a practical variant of Algorithm 2 that still inherits
its theoretical intuitions. This involves two main steps.

Removing binary search. Algorithm 2’s binary search
over y is a theoretically efficient search over possible optimal
or worst-case values of e-CCE. However, it is inefficient in a
nested optimization like Equation 1. Observing that y’s value
affects only the parameterization of the importance weight
Bm+1, We can fix vy, 1 to a sufficiently small value such that
ﬂm—&-l = 1["01, sy Um < 0]

Replacing Blackwell’s algorithm. During Algorithm 2’s
reduction to halfspace oracles, we can merge components of
v corresponding to the same agent. This yields a functional
equivalent of Eq 3,

maxy, ea, U1(a, z_1) — ui(x)

v(z) = o _ N C))
maXg,ecA, Un (ana m—’n) - Un(ﬂl‘)
oc—0

In practice, this choice is more tractable than Eq 3. Eq 4
lends itself to many efficient approximations. For instance,
when A is combinatorially large, we can approximate the
regret estimates with local methods rather than explicitly
enumerating all possible action deviations.

A practical algorithm. Combined, these two modifications
to Algorithm 2 render it equivalent to computing an upper-
bound for the Lagrangian dual problem, L(¢), of adversarial
sampling (Equation 7),

N
L(e) :wénpi&) m)z\ixﬂo(w) - ; i Reg, () — €], (5)

Reg; (z) := max Ui(ag, x_;) — U ().

Here, decoupled no-regret dynamics efficiently approximate
the outer optimization minge p(4). In this sense, the theoreti-
cal results of Section 4 can be interpreted as a formal bound
on how much decoupled approximations of mingc p(4) af-
fect the lower-bound of this dual problem. Theorem 1 can
thus be interpreted as the implication that, when playing a
sufficiently smooth game, it is reasonable to use decoupled
algorithms to approximate the dual problem. This motivates
our final modification to Algorithm 2: replacing the inner
no-regret learning loop with a blackbox self-play algorithm.
The final algorithm is described in Algorithm 1.

Algorithm 1: Decoupled sampling of pessimistic
equilibria.

Output: Approximate lower-bound on L(e) (Eq 5).
Input: Number of training steps M, and self-play steps
My, reward slack e, multiplier learning rate «vy,
uncoupled self-play algorithm B, regret estimators
R; : P(A) — R for each agent i.
Initialize mixed strategy .
forj=1,..., M, do
fori=1,...,Ndo
Estimate regret r; as 7; <— R;(x;), where
Ti = MaAXg, e p(A,) Wil Ti, T i) — Ui(T).
Compute multiplier A; = \; — ay (7 — €).
end for
Using B, run M, rounds of self-play with utilities
@i(a) = (Aiui(a) —uo(a))/(1 + Ai).
Set ;1 as the resulting empirical play distribution.
end for

1 My —
Return 57 > 7,7 Uo().

Adversarial Sampling Experiments

Before applying Algorithm 1 to more ambitious mechanism
design tasks, we first benchmark the quality of its adversarial
sampling. As our eventual mechanism design applications
are spatiotemporal games requiring multi-agent reinforce-
ment learning (MARL), for this experiment, we will also use
MARL as the blackbox self-play procedure of Algorithm 1.
In particular, we will use a common multi-agent implemen-
tation of the PPO algorithm (Schulman et al. 2017) and a
Monte-Carlo sampling scheme as our regret estimator.

Game Environment. The game environment for this ex-
periment is a Sequential Bimatrix Game. This is an extension
of the classic repeated bimatrix game (Figure 2), whose Nash
equilibria can be solved efficiently and is well-studied in
game theory. At each timestep ¢, a row (agent 1) and col-
umn player (agent 2) choose how to move around a 4 x 4
grid, while receiving rewards 71 (s;, s;),72(8;, 5;). The cur-
rent location is at row s; and column s;. The row (column)
player chooses whether to move up (left) or down (right).
Each episode is 500 timesteps.

We configure the payoff matrices r; and 73, illustrated in
Figure 2, so that only one Nash equilibrium exists and that the
equilibrium constitutes a “tragedy-of-the-commons,” where
agents selfishly optimizing their own reward leads to less re-
ward overall. The principal is a passive observer that observes
the game and receives a payoff 7o (s;, s;). The principal does
not take any actions and its payoff is constructed such that its
reward is high when the agents are at the Nash equilibrium. If
Algorithm 1 successfully samples realistic worst-case behav-
iors, we expect to see agents 1 and 2 learning to deviate from
their tragedy-of-the-commons equilibrium in order to (1) re-
duce the principal’s reward but also (2) without significantly
increasing their own regret.

Algorithm 1 efficiently interpolates between adversarial
and low-regret equilibria. In Figure 2 (middle), we see



Agent 1
Payoff Matrix

Agent 2
Payoff Matrix

Ego Agent
Payoff Matrix

|elIBSISAPY 240N

-
Nash Equilibrium e MARL 2
90.7
Ours o 06
® ® £=-10 o
® c=-1 3: 0.5
® =1 N
e= 5 o 0.4
e=20 v
» 03
)
c
@ 0.2
More Agent Regret g
e ——

Impact of Reward Slack €

Reward Slack vs Agent Regret

IS o 8000
=
= ©
8 2 6000
a (]
- O 4000
€ =
23 o, 2000
< <
Agent 2 Position o 0
o
t=0 t=1 t=2 t=3 W _2000
Agent 1 action: | + + 3
Agent 2 action: —» —> <« —>

6500 7000 7500 8000 8500 9000 9500

Agents 1 & 2 Combined Reward

-10 -5 0 5 10 15 20 25 30
Reward Slack ¢

Figure 2: Validating our algorithm (Algorithm 3) in constrained repeated bimatrix games. Left: In the repeated bimatrix game,
two agents navigate a 2D landscape. Both agents and the principal receive rewards based on visited coordinates. Brighter squares
indicate higher payoff. The bimatrix reward structure encodes a social dilemma featuring a Nash equilibrium with low reward
for the two agents and high reward for the gambler. Vanilla MARL converges to this equilibrium. Right: Agents trained with
our algorithm deviate from this equilibrium in order to reduce the reward of the principal. e governs the extent of the allowable
deviation. As € increases, the average per-timestep regret experienced by the agents also increases. Each average is taken over the
final 12 episodes after rewards have converged. Each point in the above scatter plots describes the average outcome at the end of
training for the agents (x-coordinate) and the principal (y-coordinate). Error bars indicate standard deviation.

the equilibria reached by agents balance the reward of the
principal (y-axis) and themselves (x-axis). In particular, we
see that conventional multi-agent RL discovers the attractive
Nash equilibrium, which is in the top left. At this equilibrium,
the agents do not cooperate and the principal receives high
reward. Similarly, for small values of €, our algorithm discov-
ers the Nash equilibrium. Because € acts as a constraint on
agent regret, with larger values of ¢, our algorithm deviates
farther from the Nash equilibrium, discovering e-equilibria
to the bottom-right that result in lower principal rewards.

Algorithm 1 has tight control over how much agents sac-
rifice to hurt the principal. We see in Figure 2 (right)
that deviations from the Nash equilibrium yield higher regret
for the agents, i.e., regret increases with e. This figure also
confirms that increasing our algorithm’s slack parameter cor-
rectly increases the incentive of the agents to incur regret in
order to harm the principal.

6 Optimizing Strategic Robustness

We now apply our adversarial sampling scheme, Algorithm 1,
to automated mechanism design problems. In particular, we
will use Algorithm 1 to provide feedback to a reinforcement
learning (RL) procedure that selects mechanisms. This RL
procedure, Algorithm 3, is described in the Appendix for
completeness. First, we induce a mechanism design problem
on a repeated n-matrix game. Then, we’ll seek to learn an
optimal tax policy in the Al Economist, a large-scale spa-
tiotemporal simulation of an economy (Zheng et al. 2020).
Each experiment setting features 4 to 5 agents involved in
complex multi-timestep interactions. They are thus signifi-
cantly more complex and costly to train in than traditional
multi-agent RL environments.

Repeated Matrix Games.

We first extend our repeated bimatrix game to include addi-
tional players and a principal.

Setup. The setting is now a 4-player, general-sum, normal-
form game on a randomly generated 7 X 7 x 7 x 7 payoff
matrix, with the same action and payoff rules as shown in
Figure 2. Recall that these players will engage one another for
500 timesteps in an episode. Each player : is associated with
an “original” reward function r;; this is the reward function
we will have access to during training. During test time, we
may also encounter other categories of agents that have dif-
ferent reward functions but who are also themselves learned
with RL.

1. Vanilla: r;.

2. Adversarial (Adv): r}
adversarial.

3. Risk-averse (RiskAv): 7 = (r} ~" — 1)/ (1 — n); higher
7 is more risk averse.

r; — Qro; larger @ is more

Results. Figure 3 shows the average rewards of principals
trained (rows) and evaluated (columns) on each type of agents.
We observe three key trends. First, principals trained on one
type of agent generally perform better when evaluated on
the same type of agent (diagonal entries). Second, princi-
pals trained with our adversarial sampling scheme perform
better across the board. Third, the robustness gains of our
adversarial sampling scheme are stronger when ¢ is large.
This is expected as € parameterizes the adversarial strength
of our sampling scheme. For small ¢, adversarial sampling
reduces to random sampling as the CCE constraint is so tight
it permits no adversarial deviations. We also saw that, even
though all methods were run with 20 seeds and filtered down
to 10 seeds on a validation set, our algorithm’s results re-
main somewhat noisy, as it may not converge when badly
initialized.

Taxing a Simulated Economy.

We now apply our algorithm to designing dynamic (multi-
timestep) tax policies for a simulated trade-and-barter econ-



Training | Testing — Original Adv(Q =0.25) Adv(Q =1) RiskAv(n=0.05) RiskAv(n =0.2)
MARL 104+50.5 -5.8434.1 -232+4293 383+144 352+426
Adv (QQ = 0.25) 143+35.0 64.7+35.1 -191+36.0 2364238 2924284
Adv (Q =1) 131+63.1 -23+10.1 4743820 286+35.1 290+36.0
RiskAv (n = 0.05) -20+44.2 -112+157 -222+4293 404-+47.2 464-+0.95
RiskAv (n = 0.2) -53+324 -150+20.0 -283+298 465+0.61 358+70.9
Ours e = —10 227+50.8 48.9+124 -137+43.1 2654418 2924383
Ours € = 50 22143808 48.3 1297 -53+140 460+33.9 4814386

Figure 3: Robust performance in /V-agent matrix games. We train an principal ina 7 x 7 x 7 X 7 matrix game with n = 4
agents (including the principal) until convergence. For each method, we train 20 seeds and select the top 10 in a validation
environment. Each row corresponds to a specific agent type that the principal is trained on. "MARL’ refers to agents trained
using their ‘Original‘ reward definition; ‘Adv’ refers to adversarial agents; ‘RiskAv’ refers to risk-averse agents. The principals
trained on these types of agents tend to perform best when evaluated on the same type seen during training. In contrast, principals
trained against agent behaviors sampled using our algorithm (e = 50) perform within standard error of top-1 on all agent types.
We use the ‘Original‘ reward definition when training with our algorithm.

Training | Testing — Original 7 =011 7=019 7n=027 a=025 a=25
Free Market 326+1 527+2 427+1 162+1 24842 112+0
Federal 33548 63745 497 +2 15042 270+1 121+0
Saez 381+1 597+3 487 +4 189+1 265+0 127+0
Ours (e = —30) 375+9 6466 514112 16419 2662 13112
Al Economist (Original) 386+2 628+5 51541 123413 267+0 12941
Al Economist (n = 0.11) 25345 683+7 506-+1 140+1 255+2 129+0
Al Economist (n = 0.19) 308+17 66519 54346 82429 25643 131+
Al Economist (n = 0.27) 339411 603+3 477 +1 137+10 266+0 129+0
Al Economist (¢ = 0.25) 32442 625410 50147 121425 263+0 128+0
Al Economist (o = 2.5) 104427 636+3 246+33 49+10 251+4 135+

Figure 4: Robust dynamic tax policies in a spatiotemporal economy. First 3 rows are classic tax baselines: “Free Market” has
no taxes; “US Federal” uses the 2018 US Federal progressive income tax rates; “Saez” uses an adaptive, theoretical formula to
estimate optimal tax rates. Bottom rows correspond to learned policies trained to optimize, and evaluated on, the social welfare
metric swf of equality and productivity. ‘Ours’ and ‘Al Economist (Original)’ are trained on the ‘Original’ settings (risk aversion
1 = 0.23; entropy bonus o = 0.025). Naive multi-agent reinforcement learning tax policies, including (Zheng et al. 2020)’s
original Al Economist, fail to generalize to previously unseen agent types. In contrast, our algorithm performs within standard
error of top-1 on all agent types.

omy with strategic taxpayers that interact with one another
(Zheng et al. 2020). See Appendix B for a screenshot.

Setup. In this simulated economy, the principal sets a tax
policy and the agents play a partially observable game, given
the tax policy. Each episode is 1,000 timesteps of economic
activity. Taxpayers earn income z; ¢ from labor /; ; and pay
taxes T'(z; ¢). They optimize their expected isoelastic utility:

Results. Figure 4 shows the social welfare achieved by our
algorithm, naive dynamic RL policies (Zheng et al. 2020),
and static baseline tax policies (Saez, US Federal). Naive RL
policies achieve good test performance when evaluated on the
same agents seen in training, but perform poorly with agents
with different ) and noise level. They are often outperformed
by the baseline taxes, which perform surprisingly well under
strong risk aversion (n = 0.27) and noisy agents (entropy
bonus o = 0.25, 2.5). We see that the static baseline taxes

j};" -1 may be more robust than dynamic ones, even in complex
Zig = Zig — T(zi,t)7 Ti,t(-ii,t, l,gt) = 1 — —lis, environments. However, our algorithm closes this robustness
n ) gap, consistently outperforming or tying both AI Economists

where Z;; is the post-tax endowment of agent ¢, and 1 >
0 sets the degree of risk aversion (higher n means higher
risk aversion) (Arrow 1971). Players expend labor and earn
income by participating in a rich simulated grid-world with
resources and markets. The principal optimizes for social

welfare swf = (1 — %gini(z)) . (vazl zi>, the product
of equality (Gini 1912) and productivity. The taxpayers are

also themselves learned with multi-agent RL, using a PPO
algorithm entropy hyperparameter o (Schulman et al. 2017).

and baseline taxes.

7 Future Work

Efficient sampling of worst-case equilibria is a key challenge
for robust decision-making, and by extension, automated
mechanism design. As we’ve explored uncertainty sets based
on game-theoretic concepts, future work may build uncer-
tainty sets that use domain knowledge or historical data and
that may yield robustness to other types of domain shifts, e.g.,
in game dynamics.
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A Appendix: Proofs
Proof of Lemma 1
First, we observe that finding a v-maximizing CCE is equiv-
alent to solving the linear program below. Writing the joint

distribution « as a [ [;_; m;-size vector of joint densities, a
v-maximizing CCE is given by:

max 7(x)s.t.Vi € [1, N, Va; € A; : )
xeP(A)
37 [uilai,a’ ;) — ui(a’)] z(a’) < 0.
a’'c€A

Although the number of constraints in this LP is polynomial,
the number of variables is non-trivially exponential. In ad-
dition, the polynomial expectation property only guarantees
polynomial time expected utility computations for product
distributions.

Lemma 1. Fix a 0 < y < maxgeccg 7(x). Assume there is
a Poly(1/¢, n, m)-time halfspace oracle that, given a vector

B e R}:”” with non-negative components, returns an & €
P(A) such that fv(x) < 0, where

H1(1,$_1) 7%1(:13) T
ﬂ1(m17w—.1) — ()
o(@) = | _ : 3)

un(l,z_n) —un(x)

ﬂN(mN, .’I}_N) — ﬂN(.’IZ)
i y —v(x) |
Then, there is a Poly(1/¢, n, m)-time algorithm that returns
an e-CCE x with v(x) > y — e.

Proof. We will prove our lemma constructively. This proof
closely mirrors (Cesa-Bianchi and Lugosi 2006)’s proof of
Blackwell approachability.

First, we establish approachability conditions. Note that x
is an e-CCE satisfying 7(x) < € + y if @ satisfies v(x) < ¢
component-wise; the first m components give that « is an e-
CCE and the last component gives that 7(x) < e+ y. Thus if
y < maxgecce 7(x), then we know there exists ax € P(A)
such that v(x) < 0. In other words, the closed convex set
v(zx) < 0 is approachable.

For the remainder of this proof, we assume y <
maxgzecce V() and prove that we will return a e-CCE that
satisfies 7(x) < e + y. If y does not satisfy this condition,
then we will not return a CCE x that satisfies 7(x) < y be-
cause no such & would exist. Let * := argmax_,cccg?(x).

Fix a choice of €. Now, consider the following iterative
algorithm where we index timesteps by t = 1,2,... and
produce a sequence of mixed strategies beginning with some
arbitrary choice of () € P(A). We now consider every
timestep ¢ where the average value of v(x),

does not satisfy v; < e component-wise. If instead v, < €
holds component-wise, we can return Z, a uniform distribu-
tion over M), ..., (!~ and be done.

Otherwise, project U; onto the negative orthant, S :=
[—00,0]1*™, to obtain a vector 3 € R™*1,

a; = arg min||v; — all

a€eS
B, = A
D — ax|

Since S is closed and convex, (8 exists and is unique. Note
that 5 must be non-negative in all components by definition
of S. We then consult our halfspace oracle to return our next
iterate ") € P(A) where 3;v(xz®) < 0. A solution must
exist as, for any ¢, x* satisfies Srv(x*) < 0.

We now prove this algorithm returns the desired output in
Poly(%, n, m) and hence Poly(%, |1]) time.

Since Dy41 = 10, + 1v(x?)), we may write,

d(Ve41,5)% = [Ve1 — apa ||
<1 — al?

t 1

=7+ so@®) - o
t—1

|

1
— @ —a) + 7 (v@?) —ar) |
t—1\°
() -l
1 2
+(7) Toe®) - al?

t—1
+ 27(”(33(”) —ap) - (U — ay)
Let Uumax = max{||u1llco;-- -, ||un]loo, [|[¥||lo} and
Umin = — max{||—u1]loos - - -, | =UN |00, || =]/ } - Recall

that by construction of G, Umax > Umin 1S polynomial bounded
by || so without loss of generality, let us fix utilities to a unit
ball: umax < 1,umin > —1. We can rearrange the equation
to obtain,

i1 — aga || — (¢ = 1)%]0r — a¢|?

< (m+1) +2(t - D(w@®) - a;) - (@ - ar)

Then sum both sides of the inequality fort = 1, ..., n with
the left-hand side telescoping to become 12|, 1 — any1]?.
Dividing both sides by n?,

[Tn+1 — @t ”2

(m+1) 2~t— _
_74’%; n m(t fat)-(vtfat)
m+1) 2 -t _
<D 2 @ ®) a0 - [~ ail

t=1

at|| € [0,2], B, —a; > 0 component-wise,



and by construction of x,

_ m+1 8 —
s~ anal? < P4 B S g 0(a) —a)

=1
(m+1)
< — Zﬁt w(t)
< (m+1)
n

By triangle inequality, after n steps, we have a }-CCE

x with 7(z) > y — % Substituting € = we have a

f’
Poly(%7 n, m) runtime concluding our proof of this lemma.
Suppose that ? is chosen where we only have the guaran-
tee that (Bt)l:mv(wt)l:m < €1 and (Bt)m+lv($t)m+l < €2.
Then, we would instead have || (Up11)1:m — (@np1)1:m]]? <

w +8e1 and [[(Tnt1)mt1 — (@nt1)mr1]]? < w +
862.

Proof of Lemma 2

Lemma 2. Let p denote an upper bound on the price of
anarchy of G, G. There exists a Poly(1/e, n, m, p)-time half-
space oracle that, given a vector § € R}Jm and y <
pmaxgecce V(x), returns an & € P(A) such that fv(x) <
€ where v is defined as in Equation 3.

Proof. We will prove that this oracle exists by construction.
We will further limit our choices of candidates x to prod-
uct distributions. Then, finding our desired oracle is equiv-
alent to solving an optimization problem over m variables:
xi, .2l ad, ., 2’Y where o) corresponds to the
probability that agent ¢ plays action j under . The objective
is minimizing

fu(@) = —Bm1(F(@) —y)

J ,_ w . Z;n:ll /B’LJ Za_,; a ’ (]7 )
*; gﬂ ( Z Z}’;lﬁi )
= _ﬂm+1(’/(a}) - y)

- énﬂinl (wt@) - (7))

down to a non-positive value. For convenience, we’ll write,

C(x) = =fm10(z)

- iwm (w@) - (5o )

Note that efficiently finding a  with a guaranteed negative
upper bound lets us specify that upper bound as a condition
Y.

This optimization problem is combinatorial and generally
intractable. However, we can exploit the usually high social
welfare of no-regret learning. Consider no-regret learning
with n agents that have the cost function,

U; (617 Il?_i) > )
[1Billx

Bt (e -

ci(x) = —

with action space A;. Since applying regret matching would
ignore our U terms, we instead take advantage of smoothness.
Observe that the first term (the game of penalizing principal
agent) is bound by the smoothness of GG, and the second
term (the game of minimizing incentive to deviate from [3) is
bound by the smoothness of GG. Thus, for any x, x*:

al (T iy TF )t al v(x*) v(x)
iy Ly 1 .
E —7\ T < § - )‘[; N - MG N’

i=1 =1

N
Zﬁ T4, X, 1m<Z||ﬂz||/\G ul( )_HZ(B))

i=1
+ 1Billna <UL <W7m—i) —ui(:c)> )

We can now run a generic no-regret learning algorithm,
say Hedge, which has regret O(+/T') after T eplsodes Specif-
ically, the ergodic average x of T" episodes is a O( ) CCE.

Letting * be a CCE for the game defined by {cl}lzl, it
follows:

fo(x) < = Bni1(Agr(@”) + pev(z))
+ MGBl:m’U(w)l:m + O(\/T)
Finally, recall we require that C'(x) + Bn4+1y = Sv(x) <

0, meaning that in order for our halfspace oracle to always
return something, we require y satisfy:

Amaxgecce V(@)
w—1
Ly< )\maXmec(;E ﬁ(w)

/Bm—i-l(l - ,Uf)

+ 6m+1y <0

A MaXgcCCE P((L’)
(1—p)

Proof of Theorem 1

Theorem 1. For succinct n-agent m-action games of
polynomial type and expectation property, there exists a
Poly(1/e,n,m, p) algorithm that will find an e-CCE « with

- Y
V() > = —e

(z) > P

Ag

1-max{pc,png}”

The main theorem follows directly from Lemmas 1, 2.
Specifically, for any y < max,ecmng, instantiate the algo-
rithm described in Lemma 1 with the oracle described in
Lemma 2. This is described in full in Algorithm 2. Note that
the oracle returns a mixed strategy that is guaranteed to be
composed of a polynomial number of known product distri-
butions; hence, any mixed strategies returned by the oracle
can be evaluated in polynomial time.

for any y < maxg+ecce 7(x*), where p =

Proof of Proposition 1

We first motivate our study of how behavioral deviations
affect the generalization of strategic policies. Specifically,



we will look at examples of where naive strategic decision-
making can result in significant regret when confronted with
boundedly rational agents—even when said agents are asymp-
totically rational.

For simplicity, we’ll discuss a traditional single-follower
Stackelberg setting where N = 1. In this setting, we’ll refer
to agent 0 as the leader and to agent 1 as the follower. Recall
that in fully rational settings, we can anticipate the follower
to play a best response to whatever mixed strategy the leader
adopts: X = BR(wx) := argmax,, ¢ 4, Eaya, [u1(ao, a1)].

Consider an instance of bounded rationality where the
leader plays a strategy xo but the follower perceives the
leader as having committed to the strategy Z(. This may
arise in partial observability settings or when the follower is
limited to bandit feedback, for example. A classical statement
of the fragility of Stackelberg equilibria is that even when
the follower’s error, ||xg — Zol|, is infinitesimally small, the
follower’s bounded rationality can cost the leader a constant
value bounded away from zero.

Proposition 2. Fix a leader mixed strategy xg € P(Ap).
There exists Stackelberg game (N = 1) with bounded
payoffs where there is a sequence of mixed strate-
gies :L'él), 1’(()2), .-+ € P(Ap) such that lim; ,o|zo —
xét) loo = 0 but for all ¢, ming,, cpr(zy) uo(zo, 1) —

Max, cpp,() uo(zo,x1) is positive and bounded away

from zero.

These situations arise when the relationship between the
leader and follower’s utility functions is not smooth. Samuel-
son’s game is an example of where this may result in non-
robust optimal strategies independent of a Stackelberg as-
sumption. Consider the below payoff matrix.

L R
T | 100, 100 | 50, 99
B | 99,100 | 99,99

There is a unique Nash equilibria at ag = T,a; = L.
Accordingly, optimizing against the best response of the
column-player would recommend a 7" pure strategy to the
row-player. However, if the column-player is boundedly ratio-
nal or otherwise acts according to a perturbed payoff matrix,
a safer strategy for the row-player is to play the action B,
which guarantees at least a payoff of 99. Optimizing against
the worst-case e-best response of the column-player, where
€ > 1, would recommend this robust B strategy to the row-
player. Extending this insight into the N > 1 domain, we
similarly want to optimize against worst-case equilibria to af-
ford robustness against payoff structures such as Samuelson
games.

Proposition 1. The uncertainty set X’ of (any combina-

tion of) agents violating assumptions 1-3 with parameters

Ym» Vs> Vp 18 contained in the set of e-CCE:

CCE. ={x e P(A)|Vie[l,...,N],a; € A; :
anm[ui(a)] +ei > Ea—i"‘m—i [ul(alv afi)]}7

where ¢; = max{ %, Vs, 27p }. Hence, we can train poli-
cies robust to such agents by using the following in the ro-

bustness objective of Equation 1:
X (z9) ={x € P(A) | Jzp € Ap : (g, x) € CCE.}.

The proof of this proposition follows immediately from the
observation that all three uncertainties—subjective rationality,
procedural rationality, and myopicness/commitment power—
can be framed as uncertainty about agent utility functions.

Proof. First, subjective rationality is by definition an un-
certainty about agent utility functions. Our parameteriza-
tion of this uncertainty yields a natural uncertainty set over
reward functions. Recall that we upper bound the infinity
norm by ~,, which is defined as the inf,, s.t. ||u; — 4]0 =
maxgeA [ui(a) — 4;(a)| < . We accordingly define the
uncertainty set = (u;) = {u; 1 A = R | |Ju; — Gloc < €}

Similarly, we can define an uncertainty set around non-
myopic agents and general uncertainty about our commitment
power by upper-bounding possible perturbations to an agent’s
originally anticipated utility function. In particular, |u; —

(ui(®) + > o Yhuwi(ze)) | < % = €. Hence, all non-
lleill oo
€

myopic agents with v,, < 1 —
the uncertainty set = (u;).

Procedural rationality can also be framed in terms of
Ze(u;). In particular, the e;-coarse correlated equilibria un-
der u; exactly coincides with the union of coarse correlated
equilibria under reward perturbations of up to €/2. Formally,
x is in an ¢;-coarse correlated equilibria under w; if and only
if,

Vi € [1, ceey N},IEZ S P(Az) : ﬂz(w) +€ > ﬂi(xi7w,i)

will be expressed in

@ is in a coarse correlated equilibria under some u’; € =, (u;)
if and only if,

Fu'; € Bc(uy), st
Vie[l,...,N],z; € P(A;) s i(z) >/ i(i, @),
which is equivalent to the condition,
Viell,...,N],z; € P(A):
u'i(x) +e>uli(x, ;) — &,

Hence, the set of $-equilibria behaviors, up to

(1 — %) -discount factor non-myopic agent behaviors,

and up to € reward perturbation-consistent behaviors are all
contained in the set of e-CCE. O

B Appendix: Additional Experiments

Ablation Study: Dynamic vs Fixed Lagrange
multipliers.

In our robust learning framework, Algorithm 1, the Lagrange
multipliers A play an important rule in moderating the self-
play dynamics used to sample adversarial dynamics. Specifi-
cally, the multiplier \; for agent ¢ balances agent ¢’s incentive
to improve its own reward with its obligation to act adversar-
ially to the principal by minimizing the principal’s reward.
Recall that smaller values of A yield more antagonistic agent
objectives. As described in Algorithm 3, these multipliers A
are periodically updated using local Monte-Carlo estimates of
regret. This raises the question of whether we can instead fix
a constant non-zero value for the multipliers A and still retain
an effective adversarial equilibria sampler. This experiment



answers that question in the negative. Figure 5 visualizes the
equilibria discovered with a fixed Ag in the same format as
in Figure 2 (middle). This comparison shows that using a
fixed A\g affects the equilibria discovered by our algorithm;
the bottom right quadrant which contains the e-equilibria dis-
covered with the dynamic multipliers X\ used by Algorithm
3 are not reached for any values of frozen multipliers Ag.
This demonstrates that, even in simple game settings, certain
e-equilibria are only reachable with dynamic A and hence
multiplier updates are necessary for proper behavior.

Results Using Fixed A

8000

T 6000 ® A=0.1
© -
= ® ® A=1
D 4000 ® A=2
o ® A=3
—
2000 L4 A=6
@)} A=10
< 0 ) [ ]
o
o )
Ll —2000 Expected Outcome
With Learned A
6000 7000 8000 9000

Agents 1 & 2 Combined Reward

Figure 5: Using fixed values of A (rather than allowing it to
update, as in the full algorithm) distorts performance and pre-
vents agents from reaching the same e-equilibria discovered
with learned \.

Figure 6: Visualization of the spatiotemporal economic sim-
ulation published by (Zheng et al. 2020) and used in our
dynamic mechanism design experiment in Figure 4. In this
25-by-25 grid world, 4 heterogenous agents perform labor,
trade resources, earn income, and pay taxes according to the
schedules set by our policies.

Additional Experiment Details

The hyperparameters for our deep dynamic mechanism de-
sign experiments are listed in Table 1 for the N-Matrix games
(depicted in Figure 3), and Table 2 (depicted in Figure 4) for
the AI Economist tax policy game. Additional hyperparam-
eters specific to the Al Economist simulation environment
were kept at default values as described in the manuscript
(Zheng et al. 2020).

Table 1 details: In the N-Matrix game experiments, we
train 20 models for each training method and conduct evalua-
tion runs of each model in every test environment. However,
evaluation runs may fail to stabilize. Thus, we drop the bot-
tom 10 evaluation runs for each training method.

Table 2 details: In the AT Economist tax policy experi-
ments, we train 9 models for each training method and con-
duct evaluation runs of each model in every test environment.
However, evaluation runs may fail to stabilize. Thus, we drop
the bottom 6 evaluation runs for each training method. Fur-
thermore, for this complex task, the adversary in Algorithm
3 may fail to converge in reasonable time. Thus, for the Al-
gorithm 3 training method, we select its 9 trained models
from a set of 15 candidate models (i.e., dropping at most 6
failed training runs). This selection is made programmatically
on the basis of each model’s median reward on validation
runs in a standalone validation environment (n = 0.27). We
similarly choose the ¢ = 30 hyperparameter for Algorithm 3
from a grid-search over e € {0, —10, —20, —30, —40} on the
basis of validation reward.

C Appendix: Additional Related Work

In this section, we discuss additional related work regard-
ing adversarially robust reinforcement learning. The topic of
adversarially robust reinforcement learning originates from
control theory literature. Morimoto and Doya (2000) pro-
posed a form of adversarially robust reinforcement learning,
inspired by H, control, for attaining robustness to uncer-
tainty about the environment dynamics. Later, Pinto et al.
(2017) proposes to learn an adversary policy to induce this
robustness, again targeting robustness to uncertainty about en-
vironment dynamics in a control-theoretic sense. Other works
have since studied perturbing transition matrices, observation
spaces, and action probabilities of Markov decision processes,
with motivating applications in robotics and control theory
(Tessler, Efroni, and Mannor 2019; Hou et al. 2020). These
concepts have recently been extended to multi-agent settings,
such as by (Li et al. 2019). However, these prior work on
robust multi-agent learning differ from ours in two impor-
tant ways. First, their multi-agent task is controlling a swarm
(of multiple agents) in an efficient and coordinated fashion.
Our multi-agent task is designing a policy that will yield
favorable strategic outcomes in a multi-agent game. Second,
their works analyze control-theoretic notions of robustness,
extending single-agent policy techniques to a multi-agent
policy setting.



Parameter Value
Training algorithm PPO
Episodes 10,000
CPUs (Baselines) 15
CPUs (Algorithm 3) 95
Environment parameters

Number of agents 4
Episode length 500
World dimensions TXTXTXT
Training Seeds 20

Test Seeds 10
Neural network parameters

Number of convolutional layers 0
Number of fully-connected layers 2
Fully-connected layer dimension (agent) 128; 32
Fully-connected layer dimension (planner)  128; 32
LSTM cell size (agent) 0
LSTM cell size (planner) 0

All agents share weights True
PPO Parameters

Learning Rate (Principal) 0.0006
Learning Rate, n (Other Agents) 0.003
Entropy regularization (Principal) 0.1
Entropy regularization, o (Other Agents) 0.025
Gamma 0.998
GAE Lambda 0.98
Gradient clipping 10
Value function loss coefficient 0.05
SGD Minibatch Size 2500
SGD Sequence Length 50
Value/Policy networks share weights False
Algorithm 3 Parameters

Nirain 4

Ntest 10
Initial multipliers A 8
Multiplier learning rate avy 0.01, 0.001

Table 1: Hyperparameters for N-Matrix Experiments

Parameter Value
Training algorithm PPO
Pretrained Episodes 450,000
Finetuned Episodes 20,000
CPUs (Baselines) 15
CPUs (Algorithm 3) 95
Environment parameters

Number of agents 4
Episode length 1000
World dimensions 25x25
Default iso-elastic n 0.23
Training Seeds 9

Test Seeds 3
Neural network parameters

Number of convolutional layers 2
Number of fully-connected layers 2
Fully-connected layer dimension (agent) 128
Fully-connected layer dimension (planner) 256
LSTM cell size (agent) 128
LSTM cell size (planner) 256
All agents share weights True
PPO Parameters

Learning Rate (Principal) 0.0001
Learning Rate, n (Other Agents) 0.0003
Entropy regularization (Principal) 0.1
Entropy regularization, o (Other Agents) 0.025
Gamma 0.998
GAE Lambda 0.98
Gradient clipping 10
Value function loss coefficient 0.05
SGD Minibatch Size 3000
SGD Sequence Length 50
Value/Policy networks share weights False
Algorithm 3 Parameters

Mrain 2

Ttest 5
Initial multipliers A 20
Multiplier learning rate oy 0.01

Table 2: Hyperparameters for Al Economist Experiments



D Appendix: Algorithm Pseudocodes

In this section, we provide the full pseudocode description of
Algorithms 2 and 3.

Algorithm 2: Poly(n, m, p, €)-time algorithm for
sampling approximately optimal CCE.

Output: ¢-CCE « such that

x a T .
Y0, pileri-géﬁy 10, c

Input: Generalization parameter € € R, tolerance ¢,
objective function v : Ag x A — R, principal policy x,
bandit feedback access to utility functions ug, ..., uy.
while Binary search over y € R (within v’s payoff
bounds) is coarser than the desired Poly(|I|) resolution do
Initialize some & € PP4(A).
for O(Z) iterations indexed by ¢ do
Compute the vector v; from Theorem 1 (Eq 3).
Compute importance weight vector,

max{v; — €1,0} T
max{vm,, — €1,0}
max{v,_1 —en,0}

max{vy, — €en,0}
max{v,,+1,0}
Normalize 3; < B:/]|B¢l|1-

Run O(Z5) steps of simultaneous deterministic
no-regret dynamics on n agents with cost function,

cl(w) - _ B'm-‘r?llp(x)

i () - (D) )

where (3; are the components of [ starting with index

1+ Z;;ll m; and ending with index 22:1 m; inclusive.

Store empirical play distribution of the no-regret
dynamics as x;.
If Byxy > €, y is too large. Terminate loop and
resume binary search.
end for
If the prior loop was successful (y was not too large),
store the average empirical play distribution over
xi,xo,... as x*.
end while
Return *.

Recall that the primary difference between Algorithm 1
and Algorithm 2 is that Algorithm 2 invokes no-regret learn-
ing algorithms as a subprocedure, which are provably com-
putationally inefficient (e.g., see Hazan and Koren (2016)).
No-regret algorithms do not even exist for the online learn-

ing of some finite VC dimension classes (Littlestone 1987),
meaning there are no known implementations of Algorithm
2 for the experiments considered in the paper. In situations
where one can reasonably expect gradient descent self-play
to behave like a no-regret algorithm, Algorithm 1 can still be
seen as an implementation of Algorithm 2.

Algorithm 3: Adversarially robust dynamic mecha-
nism design.

Output: Learned parameters, 0, for a mechanism
represented as agent 0.

Input: Reward slack ¢, learning rate ), batch size 3,
initial agent parameters 6 = [0y, ..., 0x].

Input: Number of rounds nounds, €valuation batches neya,
training batches M-

for j =1,..., Nounds do _
Copy 6 into placeholders 8 < 6.
for j =1,...,Neya do

Accumulate [ timesteps under 0, 6.
For each agent ¢ > 1, store their experience in a tuple
of lists,

B, j :== (Rew; ;, Obs, ;, Actions; ;).
Update each agent ¢ > 1 critic (if used) and actor for
0 with Bi~
end for
Update each agent ¢ > 1 multiplier:

)\i — )\z — ayMean (Rewmmu"ds — € — RCWiyo)
for j =1,... Nyain do
Accumulate (5 timesteps under € and 6y and store
them in Bo)j, ey BN,j-

Update the mechanism’s 6 critic and actor with By
using a slow learning rate.

Update each agent ¢ > 1 critic for 8 (if used) with
B;.

Update each agent ¢ > actor for Owith,

B,’J = (RéW@j, ObSiJ,ACtiOHSi,j)

where the recorded reward of agent ¢, at each timestep

t=1,...,03,1is modified:
R AiReWEf} - Rew((f;- P 1 5
ewW; ; = Y [t=1,...,
end for
end for

Return parameters 6.
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