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Abstract

Recent progress in strengthening the capabilities of large language models has stemmed from applying
reinforcement learning to domains with automatically verifiable outcomes. A key question is whether
we can similarly use RL to optimize for outcomes in domains where evaluating outcomes inherently
requires human feedback; for example, in tasks like deep research and trip planning, outcome evaluation
is qualitative and there are many possible degrees of success. One attractive and scalable modality for
collecting human feedback is preference data: ordinal rankings (pairwise or k-wise) that indicate, for k
given outcomes, which one is preferred. In this work, we study a critical roadblock: preference data
fundamentally and significantly limits outcome-based optimization. Even with idealized preference data
(infinite, noiseless, and online), the use of ordinal feedback can prevent obtaining even approximately
optimal solutions. We formalize this impossibility using voting theory, drawing an analogy between
how a model chooses to answer a query with how voters choose a candidate to elect. This indicates
that grounded human scoring and algorithmic innovations are necessary for extending the success of
RL post-training to domains demanding human feedback. We also explore why these limitations have
disproportionately impacted RLHF when it comes to eliciting reasoning behaviors (e.g., backtracking)
versus situations where RLHF has been historically successful (e.g., instruction-tuning and safety
training), finding that the limitations of preference data primarily suppress RLHF’s ability to elicit
robust strategies—a class that encompasses most reasoning behaviors.

1 Introduction
Preference data, which takes the form of ordinal comparisons (e.g., answer a1 is preferred to a2 for
query q), has been established as a highly effective and practical way of incorporating human feedback
at scale [CLB+17]. Reinforcement Learning from Human Feedback (RLHF) [OWJ+22] and its variants
[RSM+24] have become the dominant paradigm for the instruction tuning, alignment, and safety training
of large language models (LLMs) [WBZ+22, OWJ+22, BKK+22]. Preference data offers advantages in
cost-effectiveness, scalability, and its ability to reward subtle qualitative improvements.

In contrast, the greatest advancements in reasoning, agentic behavior, and tool-use capabilities have been
driven by reinforcement learning on verifiable rewards (“RLVR”) in domains where automated ground-truth
verifiers are readily available [Tea25, Ope24], such as in coding, formal theorem proving, and close-ended
exams [HBK+21, MAA24, WDR+24, OEK+25, RSS+25]. However, many important applications, such as
agentic research (e.g., Deep Research [Ope, Cit]) and creative writing [Mil, CLW25, AST25], lack binary or
quantitative notions of success and require human feedback for evaluation. A pressing challenge, therefore,
is to determine how we can extend outcome-based optimization (e.g., via RL) to obtain capabilities in
domains where human feedback is necessary. Has RLHF fallen short of RLVR simply due to cost and the
limitations of relying on preference data that is collected in an offline fashion? Would sufficiently scaling
up the collection of preference data allow for similar RL-driven breakthroughs?
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Figure 1.1: Overview of our motivation and results. Left: RLHF and RLVR have demonstrated empirical
success on alignment and close-ended reasoning tasks, respectively. Our investigation of preference data is
motivated by reasoning tasks that require human feedback. Right: Comparison of scalar rewards vs. ordinal
preferences as data modalities. Our impossibility result is due to a connection between the post-training of
models using preference data and the analysis of electoral systems in social choice theory.

We show that there is a fundamental challenge with relying on preference data for reinforcement
learning, even when preference data is collected online and at scale. We formalize this as an impossibility
result (Theorem 3.3): given any pretrained model, post-training purely on preference data can produce a
significantly suboptimal post-trained model—even in idealized conditions where there is an endless volume
of preference data available, the preference data is noiseless, unlimited computational power is allotted for
optimization, and the preference data is collected in an online fashion. We prove this result for a very
general model of LLM post-training that formalizes post-training as learning how to route queries to a set
of downstream circuits that were learned during pretraining; this model is informed by a growing body of
empirical work [WYZ+25, YCL+25] finding that post-training methods (whether RLHF, SFT, or RLVR)
primarily reinforce existing circuits/capabilities rather than introducing wholly new ones.

This result also provides a complementary perspective on the limitations of RLHF, especially for
reasoning. The poor performance of RLHF is typically attributed to the fact that preference data is
collected offline, meaning that overfitting is a significant concern and it is necessary to regularize the
post-trained model to not deviate significantly from its pre-trained base [OWJ+22, ZJJ24]. In contrast, our
result demonstrates that RLHF has an additional, orthogonal, limitation: even if data collection improves
(e.g., online and at scale), the reliance on ordinal preference data as a format means that RLHF can still fail
to improve the model, and potentially even make the model significantly worse. For reasoning in particular,
as we show in Section 4, RLHF will tend to penalize and suppress noisy and robust chains-of-thought.
While this may not impact the effectiveness of RLHF for instruction-tuning and safety training, noisy
and robust reasoning processes—such as the heavy use of backtracking—are key to improved reasoning
capabilities and multi-step problem solving. Our result underscores that there is no straightforward
method to circumvent this issue unless one has precise prior knowledge of the specific desirable behaviors
one hopes to elicit in the post-trained model and can tailor the feedback process accordingly—such as
instructing labelers to explicitly avoid penalizing backtracking even when the backtracking is unnecessary.

From a technical perspective, our approach to proving Theorem 3.3 is inspired by a novel analogy
between the post-training of models and electoral processes. A rich body of social choice theory research
has studied distortion, which quantifies the extent to which electoral processes can be suboptimal with
respect to social welfare [PR06]. Theorem 3.3 can be seen as a novel distortion bound that applies to
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social choice problems that require a mechanism not only to select alternatives but also to determine how
to effectively group voters into electoral districts.

1.1 Related works

Our work seeks to bridge the empirical progress made in the LLM space and the theoretical insights about
the limitations of ordinal data from social choice theory. We thus place our work in context with these
communities as follows.

Understanding RLHF. A wide range of recent work studies the extent to which RLHF and its
variants can successfully learn from preference data. Commonly-observed limitations include failures
to learn preference rankings (e.g., [CMZ+24]), decreases in the log probability of preferred responses,
(e.g., [PKD+24, RMB+24, ZJJ24]), and general overoptimization (e.g., [MSS+23, LLZ+24]). These issues
are often attributed to the distinction between on/off-policy algorithms or on/offline data collection. In
contrast, we study the preference data modality itself.

[WLJ23] was an early work that also studied preference data as a modality, demonstrating that there
exists a pretrained model for which preference data is not sufficient to identify the optimal post-trained
model. Our results imply a strengthening of [WLJ23]’s non-identifiability result; in particular, we show that
for any pretrained model, preference data is not only insufficient for identifying the optimal post-trained
model but cannot even identify a model whose utility is a constant fraction of being optimal. [WLJ23] also
suggests that preference data may be sufficient under specific preference noise assumptions, though we show
that impossibility remains (Theorem 3.4) even in the case where preference noise follows a Bradley-Terry
model with linear scores.

Reasoning capabilities. Conventional wisdom is that methods for learning from preference data (e.g.
DPO and RLHF) on outcomes alone typically fail for reasoning capabilities because such preference data
over outcomes is too noisy—models could give mostly-correct reasoning traces but an incorrect answer, or
arrive at a correct answer through faulty reasoning (e.g., as discussed in [LTC+24]). Thus, much algorithmic
work has focused on optimization over process rather than outcomes (e.g., [LKB+23, UKK+22, LTC+24];
see [XHZ+25] for a survey). Notably, many of these methods still require access to a ground-truth
verifier (e.g., [XGZ+24, ZDP+24, YCW+24, WLC+23]); in fact, state-of-the-art reasoning models were
developed in domains with such verifiers [SWZ+24, Tea25]. This motivates our goal of understanding
whether successful RL might be possible in “reasoning” domains that require human feedback, such as
deep research, trip planning, or creative writing [Mil, CLW25, AST25].

Finally, we note that connections between reasoning and robustness have been previously studied (e.g.,
[YJZ+25, ZNB+25]); our goal in this work is to use this connection to provide a more concrete answer to
why vanilla RLHF fails for reasoning capabilities more than other applications for which RLHF is more
successful, such as instruction tuning.

Social choice theory and distortion. Social choice has developed decades of work on distortion,
which measures the degree to which the outcome of an election can be suboptimal with respect to societal
welfare [PR06, AFRSV21]. The connection between social choice and learning from preference data for
post-training has been widely discussed [SNEA+25, DF24, CFH+24, SLHM23].

Recently, [GHY25] showed that, when preference learning is performed in heterogeneous settings where
labelers disagree, the need to reconcile disagreements between labelers introduces lower bounds on the
distortion of any preference learning algorithm. To the best of our knowledge, [GHY25] is the first to
explicitly quantify the suboptimality of policies learned via RLHF in terms of distortion (in contrast
to, e.g., the earlier non-identifiability results of [WLJ23]). In contrast to [GHY25], we are interested in
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showing unavoidable lower bounds for preference learning that hold generally, even in the absence of
heterogeneity, and are thus a property of post-training rather than of resolving labeler disagreement. To
this end, we similarly build on the concept of distortion but apply it in a novel fashion, drawing an analogy
between social choice and post-training. We discuss this more concretely at the end of Section 3.

2 A formal perspective on post-training
Our starting point is to formalize a reasonable and general model of language model post-training. The
exact mechanisms behind the improvements seen from RLHF, RLVR and SFT is a topic of lively debate,
but there is a growing consensus that these post-training methods reinforce existing capabilities attained
in pretraining rather than produce new capabilities. The current evidence includes that (1) distillation
on reasoning models remains effective even when the example chains-of-thought are noisy and wrong
[MYS+25, Lab25]; (2) reinforcement learning on a single sample works well [WYZ+25]; and (3) reasoning
behaviors are already present in pretrained base models [YCL+25]. Due to the diversity and scale of
pretraining data and thus the capabilities represented in pretrained models, this is not an indictment of
the power of post-training. However, it does inform us that we can abstractly think of pretrained models
as consisting of a set of capabilities, and post-training as updating how these capabilities are applied to
queries. In a more formal language, post-training can be stylized as learning a good way to route queries to
appropriate downstream circuits (capabilities), where the circuits have already been learned in pretraining.

Formal model. We now turn to mathematically formulating our model of post-training, which we adopt
to study the limitations of preference data. Let us represent the universe of possible queries as Q and the
universe of possible responses as R. We will use D to denote a uniform distribution over queries Q.

We stylize a large language model as consisting of two parts. The first part of the model is a set
of circuits S = {s1, . . . , sm} learned during pretraining, where each circuit si : Q → R helps compute
potential responses to queries q ∈ Q. The second part of the model is assigning which circuits should be
used to answer which queries. We formalize this as a mapping ϕ : Q → Z of queries q ∈ Q to internal
representations z ∈ Z, and a mapping g : Z → ∆S of internal representations to circuits. Here, ∆S denotes
the set of probability distributions over circuits S, and reflects the fact that we’ll allow for the possibility
that models randomly map queries to circuits. We can therefore express a language model by the tuple
M = (ϕ, g, S), and write its response to a query q as M(q) := (g ◦ ϕ)(q)(q), where (g ◦ ϕ)(q) ∈ S is the
circuit we’ll use to answer query q.

We stylize model post-training as improving how a pretrained language model M0 = (ϕ0, g0, S0) assigns
queries to circuits, so as to maximize some utility function u : Q × R → R, where u(q, r) denotes the
utility1 of responding to query q with response r. A post-training algorithm should return a language
model M = (ϕ, g, S0) with an improved assignment of queries to circuits, g ◦ ϕ, that results in a higher
expected utility than its pretrained base M0, i.e. Eq∼D [u(q, M(q))] ≥ Eq∼D [u(q, M0(q))]. We will use
Φ ⊂ ZQ to denote the set of possible mappings from queries to internal representations that our model
class allows us to learn and that ϕ must thus be chosen from.

Finally, we note that even similar queries (e.g., variations of the same math problem) count as distinct
elements of Q in our model. We are thus mainly interested in settings where the number of possible user
queries Q that we expect our language model to encounter is large. This means that a language model
should not always be able to identify the ideal circuit for processing a given query, i.e. |Q| ≫ |Z|, log |Φ|.
For example, as we see later in Figure 4.1b, language models do not always know immediately whether to

1Utility can be thought of as a real-valued composite measure that quantifies, for example, correctness, readability, style,
and other desiderata. This may not always be measurable from data, but assuming its existence is necessary to have any
discussion about “optimality.”
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answer a math problem using a circuit that is meticulous and aggressively backtracks or a circuit that
tries to be clean and direct. We also note that because language models do not have a dedicated circuit
for answering each individual possible query, we work in the regime where |Q| ≫ |S|.

Outcome-based optimization with preference data. With access to the utility function u and
pretrained model M0 = (ϕ0, g0, S0), one can always post-train a model M = (ϕ, g, S0) to use the best
possible strategy for assigning queries to pretrained circuits S0, i.e.

E
q∼D

[u(q, M(q))] = max
M∗∈{(ϕ∗,g∗,S0)|ϕ∗∈Φ, g∗:Z→∆S}

E
q∼D

[u(q, M∗(q))] . (1)

Here, {(ϕ∗, g∗, S0) | ϕ∗ ∈ Φ, g∗ : Z → ∆S} is the set of all models that could be obtained from post-training
M0. Standard reinforcement learning, as long as one has (even noisy) observations of the utilities u, will
yield a post-trained model M that satisfies Equation (1) in the limit of infinite time and samples.

We are interested in whether this still holds when, instead, only preference data is available—that
is, labels are provided only in the sense that they compare the relative utilities of distinct outcomes. In
particular, does there exist any algorithm, be it RLHF or another RL-based approach, that is able to
successfully post-train, but using ordinal preference data instead of cardinal reward feedback about utilities
u? If not, how close to an optimal post-trained model can one hope to get by learning from preference
data? Moreover, we want a guarantee that holds not just for specific pathological pretrained models, but
for the post-training of any pretrained model. Note also that we will allow for the preference data to
be queried online—this is to distinguish between the fundamental limitations of preference data and, for
example, the overfitting caused by RLHF’s usage of offline-collected preference data.

To formalize the preference learning setting, we consider access to a labeler that, given a query q ∈ Q
and examples of responses to q generated by two downstream circuits si, sj ∈ S, identifies which response
was higher-utility. To isolate the impact of preference data as a modality, we allow for unlimited data, and
assume perfect (noiseless, unbiased) access to utility-based preference labels for every query q ∈ Q and
every pair of downstream circuits. Concretely, we can write these preferences as orderings ≻u:= {≻q,u}q∈Q
where si ≻q,u sj if and only if u(q, si(q)) > u(q, sj(q)). Note that we can interpret the preferences ≻u as
either an oracle that returns preference comparisons on-demand or an infinitely large dataset containing
all preference comparisons that one may hope to sample.

3 Limits of preference data
To show our main results, we consider an analogy between our model of post-training and the process of
running a multi-district election. In particular, we can analogize the set of circuits S in our pretrained
model as a set of candidates in an election (also referred to as “alternatives”), and the set of possible user
queries Q as voters in the election. Each query q ∈ Q has a preference over the circuits S, determined by
the utilities {u(q, s(q))}s∈S of applying each circuit to the query.

3.1 Warm-up: A failure case for RLHF

Prior work studying the relationship between the RLHF algorithm and social choice has shown an
equivalence between standard RLHF and a voting rule commonly known as Borda count [SLHM23].

Definition 3.1 (Borda count). Let rank≻q (s) denote the rank of s in the total ordering ≻q. The
Borda score of s for query q is given by Bq(s) = m − rank≻q (s). The Borda count voting rule selects
sBorda = arg maxs∈S

∑
q∈Q Bq(s), the alternative maximizing the sum of its Borda scores.
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Imagine we are given a silly pretrained model ϕ that is unable to distinguish between queries and must
route them all to the same downstream circuit, such that the only flexibility in post-training is choosing
this default circuit. We can easily construct a scenario involving this silly pretrained model where Borda
count—and equivalently, RLHF—is suboptimal. Note that our silly choice of pretrained model reduces us
to a situation that resembles the heterogeneous/hidden-context settings studied in [SLHM23, GHY25].

Example 3.2. Suppose Q = {q1, q2, q3}, S = {sA, sB, sC}, and Z = {z}. In the language of our model,
this corresponds to a world where there are three possible queries, three possible downstream circuits, and a
limited representational capacity where the model is unable to distinguish between queries and thus maps
them to the same representation z. Let α ≥ 0 and β ∈ R such that 2α < β. Assign the following utilities:

sA sB sC

q1 1 0 1 − α
q2 1 0 1 − α
q3 0 1 β

The Borda count winner is sA, with
∑

q Bq(sA) = 4,
∑

q Bq(sB) = 2, and
∑

q Bq(sC) = 3. However, the total
utility provided by each strategy is

∑
q u(q, sA(q)) = 2,

∑
q u(q, sB(q)) = 1, and

∑
q u(q, sC(q)) = 2 − 2α + β.

Thus, while sC is the highest-utility strategy, Borda count selects sA.

In Example 3.2, the circuit sC is never the winner when considering each query independently; thus,
Borda count’s ranking-based scores result in sC being dispreferred to sA, even though it achieves the
highest utility overall. In the language of social choice, sC is a “compromise candidate.” If it was known
ahead of time that there were particular features associated with high-utility outcomes (i.e., those produced
by sC), one ad-hoc solution to fix this problem might be to instruct labelers to explicitly reward those
features. However, post-training should ideally be able to learn successful strategies even when such
strategies are unknown or unidentifiable a priori, i.e. optimize for outcomes.

3.2 A more general lower bound

We’ll now show that the limitations of learning from preferences is fundamental, rather than the eccentricity
of a particular choice of pretrained model or preference learning algorithm (e.g., RLHF as in Example 3.2).
In particular, we will show that for any preference learning algorithm and any pretrained model, there
are situations in which the algorithm must produce a severely suboptimal post-trained model. Moreover,
we will quantify just how suboptimal the post-trained model can be. As we formalize in the following
theorem, this suboptimality actually grows with the complexity of one’s pretrained model.

Theorem 3.3. Consider any pretrained model M0 = (ϕ0, g0, S0) and post-training algorithm A. There
always exists a post-training objective, i.e. a utility u : Q × R → R we wish to maximize, such that: if we
post-train M0 on noiseless preference data ≻u, the resulting model M = A(M0, ≻u) is suboptimal by at
least a multiplicative factor compared to the best model M∗ that we could have post-trained from M0:

max
M∗∈{(ϕ∗,g∗,S0)|ϕ∗∈Φ,g∗:Z→S0}

Eq∼D [u(q, M∗(q))]
Eq∼D [u(q, M(q))]︸ ︷︷ ︸

(Distortion)

≥ Ω
(√

|S0|
)

(2)

when |Q| ≫ |S|, |Z|. Moreover, this lower bound holds even if we limit ourselves to situations where
utilities are bounded in [0, 1] or, even stronger, where

∑
s∈S0 u(q, s(q)) = 1 for all q ∈ Q.

The left-hand side of Equation (2) is known as distortion [PR06] and, in our setting, measures the
suboptimality of the preference learning algorithm A. Our distortion lower bound is increasing in |S0|,
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which is the number of circuits in one’s pretrained model and thus a measure of its complexity. The
condition |Q| ≫ |S|, |Z| simply rules out unrealistic regimes where models have a dedicated circuit for
processing every possible user query or models are able to exactly route each possible user query to the
circuit that is individually ideal for them. The full statement of Theorem 3.3 in Appendix A (Theorem A.1)
provides a more general distortion bound independent of this condition. We defer the proof of Theorem
3.3 to Appendix A as well.

At a high-level, we show that a difficult post-training objective must always exist using discrepancy
upper bounds. Given any pretrained model, we can carefully group possible user queries Q into k groups,
Q1, . . . , Qk, such that—from the perspective of any post-trained model—the query groups should “look”
rather similar. That is, consider the distribution over pre-trained circuits induced by sampling queries
from a group Qi and asking the post-trained model to assign the queries to circuits—this distribution over
circuits must be similar in distance to the analogous distribution for any other query group Qj . This step
of the argument follows by an application of the probabilistic method to an appropriate balls-and-bins
analogy of the post-training problem. To conclude our proof, we simply need a utility function to demand
that queries from different groups Qi be assigned to different circuits; we appeal to existing constructions
in social choice theory for this, in particular, a construction of [BCH+12].

Inferring cardinal data from noise. At first blush, Theorem 3.3 may seem to contradict intuition
from prior works about the optimality of RLHF (e.g., as suggested by the positive results in [WLJ23] and
[ZJJ23]). These works study a setting where it is possible to extrapolate the degree of (average/overall)
labeler preference by the noisiness of their labels. If labelers consistently indicate that they prefer a
response a1 over a2 with a probability that is exponential in the difference between the utilities of a2 and
a1, the variance of the preferences provides enough information to learn an optimal policy.

However, there are several considerations that limit the degree to which these assumptions can be
relied on in practice—especially as, for the most part, noise models from Bradley-Terry are unverifiable.
First, it is unclear when preference noise can be assumed to provide a consistent indicator of preference
strength. For example, as we explore in Section 4, distortion disproportionately affects the ability of RLHF
to reinforce reasoning capabilities, but it seems unlikely in practice for noise to be informative in this
setting. Second, as noted by [WLJ23], even when preference noise and preference strength follow some
consistent relationship, one would need to know a priori what that relationship is. Third, even if that
relationship was known a priori, there are natural noise models—even those satisfying the Bradley-Terry
model—where preference data remains insufficient. For example, positive results from prior works assumed
Bradley-Terry with exponential score functions—that is, si ≻q,u sj with probability proportional to

exp(u(q,si(q)))
exp(u(q,sj(q)))+exp(u(q,si(q))) . As we show below in Theorem 3.4, if we instead had a Bradley-Terry model
with linear score functions, i.e. si ≻q,u sj with probability proportional to u(q,si(q))

u(q,sj(q))+u(q,si(q)) , preference
learning can still result in poor post-training.

Theorem 3.4. Consider any pretrained model M0 = (ϕ0, g0, S0) and post-training algorithm A. There
always exists a post-training objective, i.e. a utility u : Q × R → R we wish to maximize, such that the
following holds. Even if we post-train M0 on preference data ≻u with noise consistent with the Bradley-
Terry model with linear scores, the post-trained model M = A(M0, ≻u) we obtain is suboptimal by at least
a multiplicative factor compared to the best model M∗ that we could have post-trained from M0:

max
M∗∈{(ϕ∗,g∗,S0)|ϕ∗∈Φ,g∗:Z→S0}

Eq∼D [u(q, M∗(q))]
Eq∼D [u(q, M(q))] ≥ Ω

(
|S0|

)
when |Q| ≫ |S|, |Z|. This lower bound holds even if we limit ourselves to situations where utilities are
bounded in [0, 1].
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Note that Theorem 3.4’s lower bound is a factor of
√

|S0| larger (i.e. tighter) than that of Theorem 3.3,
even though the learning algorithm is afforded more information. This is because the distortion bound in
Theorem 3.3 holds even when utilities are restricted to sum to 1 for each query, i.e. ∑s∈S0 u(q, s(q)) = 1
for all q ∈ Q. In contrast, in order to handle the fact that we allow our preference learning algorithms to
enjoy Bradley-Terry noise, Theorem 3.4 instead constructs situations where some queries are inherently
harder than others, meaning that utilities do not necessarily sum to 1; this ends up to also allow us to
obtain a lower bound on distortion that grows faster with |S0|. The full statement of Theorem 3.4 in
Appendix A (Theorem A.5) provides a more general distortion bound independent of the condition that
|Q| ≫ |S|, |Z|.

Beyond distortion. We have shown that true outcome-based optimization cannot be guaranteed with
preference data. While distortion theory is helpful for proving this limitation, the restrictions of the theory
also provides prescriptive value in suggesting some practical workarounds.

One restriction of the theory is that it assumes that utilities are fine-grained. One workaround is to
explicitly instruct human labelers to coarsen their feedback, and “tie” responses by default unless one
is significantly better than another. This is not a general solution, however, and would only work for a
narrow set of problems where, e.g. binary, notions of success suffice.

Another restriction of the theory is that it assumes only preference data is available. This leads us
to perhaps the most promising workaround: even a small amount of cardinal data (real-valued reward
feedback) is sufficient to fill in the gaps left by the use of preference data. For example, distortion can be
effectively avoided with a minimal amount of cardinal data—specifically, logarithmically as much as the
amount of preference data. This cardinal data may take the form of flagging especially poor responses, or
specifying the magnitude of a particular preference. [ABFRV21] shows that with only ∝ log2 |S| cardinal
queries, it is possible to design a voting rule with at most constant O(1) distortion—whereas there is a
distortion lower bound of Ω(

√
|S|) without cardinal data.

Theorem 3.5 (Corollary 2 of [ABFRV21]). There is a preference learning algorithm, Acceptable Range
Voting, that guarantees a constant upper bound on distortion using only ∝ log2 |S| cardinal queries.

Connection to existing distortion results. We conclude this section by highlighting two key
distinctions between prior distortion work and our model. One subtlety is that, under our model, it is
possible to route different queries to different downstream circuits—that is, (g ◦ ϕ)(q) can map to different
distributions over S for different queries—and thus our model of post-training is not directly analogous to
an ordinary election. Rather, our results are for the scenario where there is both a fixed set of alternatives
and a fixed set of ways to draw electoral districts, and the goal is to pick a social welfare-maximizing way
of dividing voters into electoral districts and choosing an alternative for each district. To the best of our
knowledge, this setting has not been explicitly studied in prior distortion work. Second, in prior works,
the analogy between RLHF and elections lies in modeling individual annotators as voters, and distortion
arises due to heterogeneity or disagreement across annotators (as in [GHY25]). In contrast, under our
model, which instead analogizes voters to queries, suboptimality is unavoidable when training any model of
finite computational complexity. Our findings suggest that the limitations of ordinal data extend beyond
reconciling diverse beliefs—situations that mirror elections literally—to any scenario constrained by finite
inference-time compute, even in the absence of subjective disagreement across human annotators.

4 Reasoning as a case study
In this section, we explore why the limitations of preference data seem to disproportionately impact the
effectiveness of RLHF in eliciting reasoning capabilities, as opposed to the successful applications of RLHF
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like safety training and instruction tuning. The problems we have access to ground-truth verifiers for are
typically close-ended reasoning tasks with binary notions of success—for instance, AIME problems or
coding exercises like Leetcode. The current generation of reasoning models, which are post-trained for
these tasks, are well-known to exhibit a specific set of “cognitive” behaviors: backtracking, error correction,
verification, intentional explicitness, rigor, and planning [GCS+25].

We argue that these behaviors can be understood as robustness, and, conversely, that robustness
should be understood as a learned strategy for handling reasoning problems [YJZ+25, ZNB+25]. In the
language of our model from Section 2, these reasoning strategies can be thought of corresponding to
particular circuits in S that correspond to “robust” behaviors, and which we want to reinforce for improved
reasoning. As we showed in Example 3.2, the primary failure mode of Borda count (and thus RLHF) is the
existence of compromise candidates; for reasoning, “robust” strategies can be considered to be compromise
candidates that do well across the universe of queries, but often lose when examining a single query at a
time. Our results therefore provide an additional explanation as to why RLHF appears to be especially
limited when it comes to eliciting improved reasoning. We defer interested readers to Appendix B for
experiment details and Appendix C for supplementary figures.

4.1 Robustness as reasoning strategy

Existing works have gathered strong evidence that reasoning models are less susceptible to malicious user
queries, especially with heavier use of inference-time compute [ZNB+25]. We show that this is part of a
broader phenomenon where reasoning models are generally more robust—including to corruptions and
perturbations to their chains-of-thought.

In Figure 4.1a, we show that finetuning a non-reasoning model on reasoning traces improves robustness
to three types of chains-of-thought perturbations. The non-reasoning model (Qwen2.5-7B-Instruct) is
significantly more sensitive to perturbations, with all three perturbation types resulting in substantial
accuracy drops. In contrast, a reasoning model (DeepSeek-R1-Distill-Qwen-7B) distilled onto the same
non-reasoning model (Qwen2.5-7B-Instruct) exhibited significantly higher resilience—including nearly no
degradation from the insertion of random not tokens. This experiment was performed on problems from
LiveBench Reasoning, AIME, and MATH [WDR+24, MAA24, HBK+21].

(a) Comparison of accuracy between Qwen2.5-7B-
Instruct (non-reasoning) and DeepSeek-R1-Distill-Qwen-
7B (reasoning) under different output perturbations.

(b) Distribution of backtracking types identified by Gem-
ini 2.0 Pro in Deepseek R1 responses. The pie chart
shows the aggregate counts of each category across re-
sponses.

Figure 4.1: Robustness as a reasoning strategy.

However, our claim is not just that reasoning models exhibit robustness properties (in the sense that
they produce correct outputs in the presence of perturbations); rather, we argue that reasoning models
have learned robust response strategies.
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We work with backtracking as a canonical example of a robust response strategy. In general, robustness
involves paying some trade-offs to mitigate uncertainty; backtracking allows the model to correct potential
intermediate mistakes at the cost of taking longer to arrive at an answer. However, knowing precisely when
to backtrack is hard because self-verification is inherently hard. As a result, reasoning models frequently
engage in unnecessary backtracking; in fact, reasoning models will even backtrack when they are relatively
confident in their solution—e.g., see Figures C.1 and C.2. Since models cannot be selective in their
backtracking behavior, the question of how much to backtrack or self-correct becomes a question of how
cautious (i.e., how robust) a model “wants” to be. We argue that the frequency of unnecessary backtracks
indicates that backtracking is a general strategy learned by reasoning models during post-training.

In Figure 4.1b, we analyze the backtracking behavior of Deepseek R1 on a set of reasoning problems
again from LiveBench Reasoning, AIME, and MATH [WDR+24, MAA24, HBK+21], with the goal of
determining how often backtracking is truly necessary. However, on these problems, the vast majority of
backtracking attempts turn out to serve no purpose at all. This result may not be entirely surprising—one
might expect that learning to selectively apply a complex reasoning mechanism is much more difficult than
learning to aggressively insert pivot tokens somewhat indiscriminately. In fact, it has been observed that
distillation on low-quality examples of reasoning traces still results in improvements [Lab25, MYS+25]: it
matters less that the distilled model learns a smart mechanism, and more that the model biases towards
frequent backtracking in general. In the language of our model, RLVR produces a post-trained model
whose routing function g heavily favors pretrained circuits that implement backtracking, but, due to finite
model capacity (a Φ of bounded size), is unable to implement a more surgical choice of (g, ϕ) that avoids
unnecessarily sending queries to backtracking circuits.

4.2 Preference learning suppresses robustness

This connection between reasoning and robustness provides a language for understanding why reasoning
behaviors may be penalized by preference data. In particular, observe that if the generation process is
reliable or the problem is straightforward, the overhead associated with robustness mechanisms (e.g.,
backtracking, explicit step-by-step calculations, exploring alternative solutions) can be unnecessary and
even detrimental. Under typical RLHF instructions, labelers may exhibit a bias against these robust
reasoning strategies. To establish this empirically, we first note that non-reasoning models are able to
exhibit reasoning behavior; Figure 4.2 below shows one such example in a model not explicitly post-trained
for reasoning.

Examples of robust behavior already in Gemini 2.0 Flash

There are 3 people standing in a line numbered 1 through 3 in a left to right order. Each person has a set of
attributes: Pet, Transport, Food, Nationality. The attributes have the following possible values: - Pet: hamster,
rabbit, rat ... - Nationality: japanese, brazilian, indian and exactly one person in the line has a given value for an
attribute. Given the following premises about the line of people: - the person that travels by tram is somewhere to
the right of the person that has a hamster ... - the person that likes cranberry is somewhere to the left of the
person that travels by tram - the person that likes watermelon does not own a rabbit or the person that travels by
tram doesn’t eat watermelon or both Answer the following question: At what position is the person that likes
avocado? Return a single digit number...

Let’s denote the three people as P1, P2, and P3.
1. **The person who is Japanese is on the far left:** P1 is Japanese.
2. **The person that travels by tram is somewhere to the right of the person that has a hamster:** This means
the hamster owner is either P1 or P2. ...
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7. **The person that likes watermelon does not own a rabbit or the person that travels by tram doesn’t eat
watermelon or both:** This is a crucial clue that helps us eliminate possibilities.
Let’s analyze possibilities. Since the avocado lover is in P3, and the tram is to the left of the avocado, the tram
must be in P2. The cranberry lover must then be in P1. Since P1 is Japanese, we know the nationality of all
three people:
* P1: Japanese, Cranberry * P2: Tram * P3: Avocado
Now let’s consider the watermelon and Indian. Since watermelon is to the right of the tram, it is at P3 and since
it’s already taken by Avocado. Hence this is a contradiction. But we have watermelon/indian and the tram to
deal with.
Considering Point 7 and tram being at P2: Either watermelon does not own a rabbit (If P3 had watermelon),
or the tram does not have watermelon (True). Either way, it does not constrain us to solving a solution at the
moment.
Let’s go back to the fact that watermelon and Indian have the same parity positions . . . so there is a contradiction.
However, if we re-examine point 3, it’s not stated watermelon/Indian *have to* be in P3 or P1 necessarily. . . . Since
tram and avocado at P2 and P3 already eliminate options of placing it in the same positions as well. Let’s keep
the initial arrangement we constructed:
* P1: Japanese, Cranberry * P2: Tram * P3: Avocado
Then watermelon is placed in either P1, or P2. There is a missing piece, as we know there should be the remaining
Pet: Rabbit...
Considering the constraints, this fits perfectly, Therefore, Avocado is at position 3. ***3***

Figure 4.2: Non-reasoning models contain robust behaviors.

Since non-reasoning models do appear to be capable of robust reasoning strategies, one may hope that
RLHF would reinforce such behavior. However, standard preference annotation disprefers and therefore
suppresses robust response strategies (prior work makes similar observations, e.g. [YCL+25]). In Figure
4.3, we show a more systematic study of this phenomenon. We select 50 questions from Berkeley MATH
[HBK+21] and LiveBench [WDR+24]. For each question, we generate a large batch of responses and select
two correct answers—one that exhibits backtracking, and one that does not. We use Gemini 2.0 Pro to
simulate the behavior of a preference annotator, and prompt it to select the preferred response in each pair.
We also experimented between providing our labeler model “standard” preference labeling instructions (as
explicitly given in [OWJ+22]) and “minimal” labeling instructions (a terse instruction that simply asks for
which response is better).

Figure 4.3: Comparison of LM (Gemini 2.0 Pro) preferences for succinct, non-backtracking responses versus
lengthy, backtracking responses, when both final answers are correct.

Across the board, under both variants of labeling instructions, the robustness mechanisms exhibited
by the reasoning model (specifically, backtracking) are dispreferred by the preference annotator in a
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substantial majority of cases. This demonstrates that suppression of reasoning is not hypothetical: base
models already do possess reasoning behaviors and—unless one’s RLHF pipeline is designed to keep an eye
out for such behavior (e.g. instructing labelers to specifically reward backtracking), preference datasets
will disencourage these behaviors.

In fact, these results almost exactly mimic the scenario illustrated in Example 3.2. The set of circuits S
learned in pretraining contains both a backtracking strategy sBacktrack and a direct strategy sDirect, which
is evidenced by the fact that both styles of correct responses can be generated. However, while Section 4.1
suggests that it may have been “optimal” to learn to choose sBacktrack, Example 3.2 predicts and Figure
4.3 confirms that sBacktrack often loses out in head-to-head comparisons to sDirect—which is precisely why
the suboptimality in Example 3.2 arises.

This also provides a concrete explanation for why the limitations of preference learning we observed in
Theorem 3.3 and Theorem 3.4 are particularly profound when it comes to RLHF for reasoning. These
theorems say that for any preference learning algorithm and any pretrained model, there is a situation
where the post-trained model will be lacking. Robust learning strategies (“compromise candidates”) are
useful circuits happen to be exactly the situations that are the main failure mode for the RLHF learning
algorithm and—as we saw in this section—reasoning and robustness heavily overlap.

5 Discussion
In this work, we seek to develop a conceptual understanding of how preference data as a modality interacts
with post-training as a goal. Our lower bounds in Section 3 suggest that preference data alone is not enough
to make progress in qualitative reasoning tasks. However, the boundaries of our impossibility result also
illuminate pathways to mitigating the lossiness of preference data. For example, as discussed in Section 3,
even modest cardinal feedback signals can exponentially decrease information loss [ABFRV21, ABFV20].

The question of how to design and calibrate those signals, in a way that is practically impactful, remains
an open question, especially as this cardinal data must be an effective proxy for true utility; it is possible
that task-specific heuristics may be necessary. For example, if features of effective strategies were known
for a particular task, one could explicitly instruct annotators to prioritize them (e.g., for reasoning tasks,
labelers could be instructed to prefer strategies that appear to be robust). We see these methodological
developments as necessary steps for making RL work in domains requiring human feedback.

More broadly, the categories of tasks we present in Figure 1.1 were chosen heuristically based on
current frontier capabilities. An interesting direction for future work, both theoretically and empirically, is
to identify crisper descriptions or categorizations of tasks that we might hope a post-trained model to be
able to do. What makes tasks “similar”? What kinds of data is available, and what kinds of methods
can we expect successful? Answering these questions effectively may, perhaps, offer a pathway to sidestep
task-specific development towards more principled post-training approaches.
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A Omitted proofs
For convenience, we will use the shorthand uq : S → R to denote uq(s) := u(q, s(q)) and overload this
notation to denote uq(ϕ, g, S) = uq((g ◦ ϕ)(q)). We will also drop u from the subscripts of ≻u and ≻q,u

when u is clear from context.

A.1 Proof of Theorem 3.3

Theorem 3.3. Consider any pretrained model M0 = (ϕ0, g0, S0) and post-training algorithm A. There
always exists a post-training objective, i.e. a utility u : Q × R → R we wish to maximize, such that: if we
post-train M0 on noiseless preference data ≻u, the resulting model M = A(M0, ≻u) is suboptimal by at
least a multiplicative factor compared to the best model M∗ that we could have post-trained from M0:

max
M∗∈{(ϕ∗,g∗,S0)|ϕ∗∈Φ,g∗:Z→S0}

Eq∼D [u(q, M∗(q))]
Eq∼D [u(q, M(q))]︸ ︷︷ ︸

(Distortion)

≥ Ω
(√

|S0|
)

(2)

when |Q| ≫ |S|, |Z|. Moreover, this lower bound holds even if we limit ourselves to situations where
utilities are bounded in [0, 1] or, even stronger, where

∑
s∈S0 u(q, s(q)) = 1 for all q ∈ Q.

We will prove the following generalization of Theorem 3.3, which provides precise rates on our distortion
bound. Theorem 3.3 follows immediately by choosing |Q| ≫ |S|, |Z| in Equation (3).

Theorem A.1 (Generalization of Theorem 3.3). Consider any pretrained model M0 = (ϕ0, g0, S0) and
post-training algorithm A. There always exists a post-training objective, i.e. a utility u : Q × R → R we
wish to maximize, such that: if we post-train M0 on noiseless preference data ≻u, the resulting model
M = A(M0, ≻u) is suboptimal by at least a multiplicative factor compared to the best model M∗ that we
could have post-trained from M0:

max
M∗∈{(ϕ∗,g∗,S0)|ϕ∗∈Φ,g∗:Z→S0}

Eq∼D [u(q, M∗(q))]
Eq∼D [u(q, M(q))]︸ ︷︷ ︸

(Distortion)

≥ Ω
(

min
{√

|S0|, |Q|√
|Q|(log |Φ| + |Z|) + |Z|

})
. (3)

Moreover, this lower bound holds even if we limit ourselves to situations where utilities are bounded in
[0, 1] or, even stronger, where

∑
s∈S0 u(q, s(q)) = 1 for all q ∈ Q.

Proof. Let m = |S0|. To motivate our multi-color discrepancy argument, we draw an analogy between
our post-training setting and a multi-color variant of the balls-and-bins problem. Specifically, let us
analogize queries Q to balls B, internal representations Z to groups (colors) G, representation functions Φ
to mappings (colorings) S ⊂ GB, and query groups {Qi}i to bins [k]. The goal is to argue that there is a
way to place our balls in our bins such that for any coloring g ∈ S, the total number of balls belonging to
the most popular bin within their own color community is small.

Lemma A.2. Let B be a set of n balls, G a set of r groups, and S ⊂ GB a set of mappings from balls to
groups. There is always a mapping f from balls B to k bins such that for any grouping g ∈ S:

1. The total number of balls belonging to the most frequent bin in their respective groups is close to n/k:

∑
u∈G

max
j∈[k]

|{b ∈ g−1(u) | f(b) = j}| ≤ O

(
n

k
+
√

nr log k + r log k +
√

n log(|S|)
)

.
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2. The total number of balls belonging to the least frequent bin in their respective groups is bounded:

∑
u∈G

min
j∈[k]

|{b ∈ g−1(u) | f(b) = j}| ≥ Ω
(

n

k

)
− O

(√
nr log k + r log k +

√
n log(|S|)

)
.

Let us now consider the assignment of queries Q into k query groups Q1, . . . , Qk that is implied by
Lemma A.2. We have the guarantee that for any representation function ϕ ∈ Φ and internal representation
z ∈ Z, the function ϕ converts a roughly equal number of queries from each query group Qi into the
internal representation z:

∑
z∈Z

max
j∈[k]

|{q ∈ ϕ−1(z) | q ∈ Qj}| ≤ O

(
|Q|
k

+
√

|Q||Z| log k + |Z| log k +
√

|Q| log(|Φ|)
)

.

Similarly, for any ϕ ∈ Φ:

∑
z∈Z

min
j∈[k]

|{q ∈ ϕ−1(z) | q ∈ Qj}| ≥ Ω
(

|Q|
k

)
− O

(√
|Q||Z| log k + |Z| log k +

√
|Q| log(|Φ|)

)
.

We’ll now explicitly define an unfortunate post-training objective, which we can recall corresponds to
maximizing some utility function u. We start by defining what preferences ≻u we want our objective u to
induce. Afterwards, we’ll finish defining exactly what the objective u is.

Defining ≻u. Let us define queries q ∈ Qi as preferring strategy (i.e., circuit) si the most, i.e. si ≻q sj

for all j ̸= i, and then prefer the remaining strategies sj in ascending order of index, i.e. sj ≻ sj+1 ≻ . . . .
Because our preference learning algorithm A must produce a post-trained model using only access to
the pretrained model M0 = (ϕ0, g0, S0) and the preferences ≻u, our post-trained model M = (ϕ, g, S0) =
A(M0, ≻u) is now well defined. Recall that, in our notation, M maps queries to internal representations
using ϕ ∈ Φ and uses internal representations to assign queries to circuits via g ∈ SZ

0 .

Defining u. Let us construct a utility function inspired by [BCH+12]. We will first define a helper
function v(j) = 2

m−1(1 − j
m) to help with some tie-breaking nuances. We can observe that v is decreasing

in its argument, and that ∑j∈[m] v(j) = 1 and v(j) ∈ [0, 1].
Let us next fix any representation z ∈ Z that our post-trained model M = (ϕ, g, S0) maps at least one

query to, i.e. ϕ−1(z) ̸= ∅. Because g(z) is a probability distribution over the circuits in S0, the pigeonhole
principle implies that there must exist some circuit index iz ∈ [k] such that g(z) places little weight on
circuit siz ∈ S0: specifically Pr(g(z) = siz ) ≤ 1/k. We thus have, for each internal representation z ∈ Z, a
circuit index iz ∈ [k] that our post-trained model places a lot of weight on.

Let us still fix a representation z ∈ Z and now consider any query q in our query group Qiz that has the
representation z, i.e. q ∈ Qiz ∩ ϕ−1(z). We will define our post-training objective for the query q, denoted
by the utility uq, to be uq(sj) = (1 − ε) · 1[sj = siz ] + ε · v(j), for some small ε > 0. For any query q that
also has the representation z but belongs to a different query group Qi where i ̸= iz, i.e. q ∈ ϕ−1(z) \ Qiz ,
we will define the post-training objective for the query q to be uq(sj) = (1 − ε) · 1

m + ε · v(j). Observe that
these utilities remain consistent with the preferences ≻u, sum to 1 for any given query ∑s∈S0 uq(S) = 1,
and are bounded in [0, 1]. At a high-level, this means that, for the post-trained model to be high-utility,
queries that have the internal representation z should ideally belong to the query group Qiz .
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Bounding the utility of M . We now turn to bounding the utility of our post-trained model. For
convenience, let ni,z = |{q ∈ ϕ−1(z) | q ∈ Qi}| denote the number of queries in query group Qi that
share the internal representation z. If we follow our construction above of an unfortunate post-training
objective, then, for all representations z ∈ Z, the utility of our post-trained model—and in particular its
query-to-circuit assignment scheme g ◦ ϕ—can be written as

∑
z∈Range(ϕ)

∑
q∈ϕ−1(z)

uq((g ◦ ϕ)(q)) ≤
∑

z∈Range(ϕ)
Pr(g(z) = siz ) · niz ,z + 1

m

∑
i ̸=iz

ni,z

≤ |Q|
m

+
(m − 1)∑z∈Range(ϕ) niz ,z

km

where the looseness in the first inequality follows from dropping ε terms. In other words, the utility of
our post-trained model is now directly upper bounded by the number of queries that belong to the query
group Qiz that their internal representation z suggests that they should belong to.

To upper bound niz ,z, we will use our discrepancy bound from the first part of Lemma A.2, which
guarantees that the total number of queries belonging to the “right” query group is not that large:

∑
z∈Range(ϕ)

niz ,z ≤ O

(
|Q|
k

+
√

|Q||Z| log k + |Z| log k +
√

|Q| log(|Φ|)
)

.

Plugging this back into our upper bound on our post-trained model’s utility, we have:

∑
q∈Q

uq((g ◦ ϕ)(q)) ≤ O

(
|Q|
m

+ |Q|
k2 +

√
|Q||Z| log k

k
+ |Z| log k

k
+
√

|Q| log(|Φ|)
k

)
.

Bounding the utility of M∗. We now want to upper bound the utility of the best possible model M∗

that we could have post-trained from our pretrained base M0. Let us therefore fix any post-trained model
M∗ = (ϕ∗, g∗, S0). The utility of this model M∗ in our constructed post-training objective is simply:∑

z∈Range(ϕ)

∑
q∈ϕ−1(z)

uq((g∗ ◦ ϕ∗)(q)) ≥
∑

z∈Range(ϕ)
(1 − ε)niz ,z.

This time, we want to lower bound the number of queries that belong to the query group Qiz that their
representations z suggest. We will therefore use the second part of Lemma A.2, which guarantees that

∑
z∈Range(ϕ)

niz ,z ≥ Ω
(

|Q|
k

)
− O

(√
|Q||Z| log k + |Z| log k +

√
|Q| log(|Φ|)

)
.

Plugging this back into our upper bound on the hypothetical post-trained model M∗’s utility, we have:

∑
q∈Q

uq((g∗ ◦ ϕ∗)(q)) ≥ Ω
(

|Q|
k

)
− O

(√
|Q||Z| log k + |Z| log k +

√
|Q| log(|Φ|)

)
.

Bounding distortion. We now prove our main claim by bounding distortion. Let us fix k ≤
√

m so m
dominates k2. Let us now adopt the shorthand:

A = k · O
(√

|Q||Z| log k + |Z| log k +
√

|Q| log(|Φ|)
)
.
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We want to ensure |Q| − A ≥ Ω(1), so we can choose:

k = Θ
(

|Q|√
|Q||Z| log |Q| + |Z| log |Q| +

√
|Q| log |Φ|

)
.

We can therefore bound

max
M∗∈{(ϕ∗,g∗,S0)|ϕ∗∈Φ,g∗:Z→S0}

Eq∼D [u(q, M∗(q))]
Eq∼D [u(q, M(q))] ≥ k(Ω(|Q|) − O(A))

O(|Q| + A)

≥ Ω
(

min
{√

|S0|, |Q|√
|Q|(log |Φ| + |Z|) + |Z|

})
.

It now remains to prove our Lemma A.2. This argument will follow simply from applying the
probabilistic approach to classic balls-and-bins high-probability bounds.

Lemma A.2. Let B be a set of n balls, G a set of r groups, and S ⊂ GB a set of mappings from balls to
groups. There is always a mapping f from balls B to k bins such that for any grouping g ∈ S:

1. The total number of balls belonging to the most frequent bin in their respective groups is close to n/k:

∑
u∈G

max
j∈[k]

|{b ∈ g−1(u) | f(b) = j}| ≤ O

(
n

k
+
√

nr log k + r log k +
√

n log(|S|)
)

.

2. The total number of balls belonging to the least frequent bin in their respective groups is bounded:

∑
u∈G

min
j∈[k]

|{b ∈ g−1(u) | f(b) = j}| ≥ Ω
(

n

k

)
− O

(√
nr log k + r log k +

√
n log(|S|)

)
.

Proof of Lemma A.2. We will begin by constructing a random assignment f : B → [k] of balls B to bins
[k]. We will sample this assignment f by randomly assigning each ball b ∈ B to a bin f(b) ∈ [k] uniformly
and independently at random. Let us denote the number of balls in bin j and group u by

Nu,j(f, g) := |{b ∈ g−1(u) | f(b) = j}|.

We want to bound two quantities for any given group mapping g ∈ S:

1. Letting Mmax
u (f, g) := maxj∈[k] Nu,j(f, g) denote the maximum number of balls of any single bin in

group u, we have

Nmax(f, g) :=
r∑

u=1
Mmax

u (f, g).

2. Letting Mmin
u (f, g) := minj∈[k] Nu,j(f, g) denote the minimum number of balls of any single bin in

group u, we have:

Nmin(f, g) :=
r∑

u=1
Mmin

u (f, g).

We now bound the expectations of Nmax(f, g) and Nmin(f, g) for a fixed group mapping g ∈ S.
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Claim A.3. For any fixed g ∈ S, E[Nmax(f, g)] ≤ O
(

n
k +

√
nr log k + r log k

)
and E[Nmin(f, g)] ≥

Ω
(

n
k

)
− O(

√
nr log k + r log k).

Proof of Claim A.3. Let nu = |g−1(u)| be the number of balls in group u. By linearity of expectation,
E[Nmax(f, g)] = ∑r

u=1 E[Mmax
u (f, g)] and E[Nmin(f, g)] = ∑r

u=1 E[Mmin
u (f, g)].

We can then directly apply the balls-and-bins inequalities for E[Mmax
u (f, g)] ≤ O(nu

k +
√

nu log k +log k)
and E[Mmin

u (f, g)] ≥ Ω(nu
k ) − O(

√
nu log k + log k). Summing over all r groups u with Cauchy-Schwarz

gives

1. E[Nmax(f, g)] ≤
∑r

u=1 O(nu
k +

√
nu log k + log k) = O(n

k +
√

nr log k + r log k).

2. E[Nmin(f, g)] ≥
∑r

u=1 Ω(nu
k ) − O(

√
nu log k + log k) = Ω(n

k ) − O(
√

nr log k + r log k).

We now use McDiarmid’s inequality to show that the random functions Nmax(f, g) and Nmin(f, g)
concentrate quickly. We proceed by first verifying that the functions f(1), . . . , f(n) 7→ Nmax(f, g) and
f(1), . . . , f(n) 7→ Nmin(f, g) satisfy the 1-bounded difference property.

Fact A.4. If binnings f and f ′ differ only in how they bin a single ball, then for any g ∈ S, |Nmax(f, g) −
Nmax(f ′, g)| ≤ 1 and |Nmin(f, g) − Nmin(f ′, g)| ≤ 1.

Proof of Fact A.4. Let f and f ′ be two binnings such that they differ only for a single ball b. Let f(b) = j1
and f ′(b) = j2. Let u = g(b) be the group assigned to ball b. By definition,

Nmax(f, g) − Nmax(f ′, g) = max
j∈[k]

Nu,j(f, g) − max
j∈[k]

Nu,j(f ′, g) ≤ max
j∈[k]

Nu,j(f, g) − Nu,j(f ′, g) ≤ 1.

Since the case for Nmax(f ′, g) − Nmax(f, g) ≤ 1 is symmetric, we have |Nmax(f, g) − Nmax(f ′, g)| ≤ 1. The
proof for |Nmin(f, g) − Nmin(f ′, g)| ≤ 1 follows identically.

By applying Fact A.4, we have from McDiarmid’s inequality that for any fixed group mapping g ∈ S
and any deviation tolerance t > 0:

P (Nmax(f, g) − E[Nmax(f, g)] ≥ t) ≤ exp
(

−2t2

n

)
,

and
P (Nmin(f, g) − E[Nmin(f, g)] ≤ −t) ≤ exp

(
−2t2

n

)
.

Let µ∗
max = supg∈S E[Nmax(f, g)] and µ∗

min = infg∈S E[Nmin(f, g)], and consider the “bad” event E :

E = {f | ∃g ∈ S : (Nmax(f, g) > µ∗
max + t) ∨ (Nmin(f, g) < µ∗

min − t)}

Taking a union bound over g ∈ S, we have P (E) ≤ 2|S| exp
(

−2t2

n

)
. Let t =

√
n log(2|S|). Then,

P (E) ≤ 2|S| exp
(−2(n log(2|S|))

n

)
= 1

2|S|
< 1.

There thus exists at least one binning f for which E does not occur. This f therefore satisfies both
conditions in the lemma claim.
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A.2 Proof of Theorem 3.4

Theorem 3.4. Consider any pretrained model M0 = (ϕ0, g0, S0) and post-training algorithm A. There
always exists a post-training objective, i.e. a utility u : Q × R → R we wish to maximize, such that the
following holds. Even if we post-train M0 on preference data ≻u with noise consistent with the Bradley-
Terry model with linear scores, the post-trained model M = A(M0, ≻u) we obtain is suboptimal by at least
a multiplicative factor compared to the best model M∗ that we could have post-trained from M0:

max
M∗∈{(ϕ∗,g∗,S0)|ϕ∗∈Φ,g∗:Z→S0}

Eq∼D [u(q, M∗(q))]
Eq∼D [u(q, M(q))] ≥ Ω

(
|S0|

)
when |Q| ≫ |S|, |Z|. This lower bound holds even if we limit ourselves to situations where utilities are
bounded in [0, 1].

The proof of this theorem follows similarly to that of Theorem 3.3. Once again, we will prove a
generalization of Theorem 3.4 that provides an explicit distortion bound.

Theorem A.5. Consider any pretrained model M0 = (ϕ0, g0, S0) and post-training algorithm A. There
always exists a post-training objective, i.e. a utility u : Q × R → R we wish to maximize, such that the
following holds. Even if we post-train M0 on preference data ≻u with noise consistent with the Bradley-
Terry model with linear scores, the post-trained model M = A(M0, ≻u) we obtain is suboptimal by at least
a multiplicative factor compared to the best model M∗ that we could have post-trained from M0:

max
M∗∈{(ϕ∗,g∗,S0)|ϕ∗∈Φ,g∗:Z→S0}

Eq∼D [u(q, M∗(q))]
Eq∼D [u(q, M(q))] ≥ Ω̃

(
min

{
|S0|, |Q|√

|Q|(log |Φ| + |Z|) + |Z|

})
.

This lower bound holds even if we limit ourselves to situations where utilities are bounded in [0, 1].

Proof. Let us again draw an analogy between queries Q and balls B, representations Z and groups G,
representation functions Φ and mappings S, and query groups {Qi}i and bins [k]. This time, we will
assign queries Q into k query groups Q1, . . . , Qk. Once again we will choose these query groups to be
those implied by Lemma A.2.

Next, we fix some R ∈ (0, 1) that is close to 1. We’ll define each query group as inducing the following
preferences: queries q ∈ Qi prefer strategy si the most with Pr(si ≻q sj) = R for all j ≠ i. This restricts
uq(si)
uq(sj) = R

1−R . Note that our preferences ≻u are now random, since we are in the setting where the
outcomes of preference comparisons is random. One way to think about this is, rather than ≻u being a
proper ordering, to think of ≻u as an oracle that returns to us the probability that one alternative wins
over another if one repeated samples noisy preference comparisons between the two.

Now, let M = (ϕ, g, S0) = A(M0, ≻u) denote the model we learned after post-training on these noisy
preferences. Note that, even though we have already fixed ≻u, we have only limited our choice of u to be
that where uq(si)

uq(sj) = R
1−R for all j ̸= i. This means that we still have the freedom to set the scale of the

maximum attainable utility maxs∈S0 uq(s) for each query q ∈ Q.
We will now fix any representation z ∈ Z that has a non-empty pre-image ϕ−1(z) ̸= ∅. Because g(z)

is a probability distribution over circuits S0, the pigeonhole principle means that there must exist some
group index iz ∈ [k] where g(z) places little weight on circuit siz ∈ S0: Pr(g(z) = siz ) ≤ 1/k. We will
define the maximum utility of any query q in group Qiz with representation z to be maxS uq(S) = 1. For
queries with representation z but that belong to a different group Qi, where i ̸= iz, we will instead give
them a maximum utility of maxS uq(S) = ε for some small ε.
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Bounding the utility of M . Let ni,z = |{q ∈ ϕ−1(z) | q ∈ Qi}| denote the number of queries that our
post-trained model maps to the representation z and that also belong to the correct query group for z. If
we follow this construction of our post-training objective u for all z ∈ Z, the utility of our post-trained
model M can be written as∑

z∈Range(ϕ)

∑
q∈ϕ−1(z)

uq((g ◦ ϕ)(q)) ≤ |Q|ε +
∑

z∈Range(ϕ)
niz ,z

(
1−R

R + 1
k

)
.

To upper bound niz ,z, we will use the first part of Lemma A.2, which guarantees that

∑
q∈Q

uq((g ◦ ϕ)(q)) ≤ 1
k

· O

(
|Q|
k

+ |Z| log k +
√

|Q| log(|Φ|) +
√

|Q||Z| log k + k · |Q| ·
(
ε + 1−R

R

))
.

Letting ε = O( 1
|Q|) and R = Ω( ε

ε+1), the last summand is suppressed to |Q| · (ε + 1−R
R ) ≤ O(1).

Bounding the utility of M∗. Consider any possible post-trained model M∗ = (ϕ∗, g∗, S0) that we
could attain. For each representation z ∈ Z, let it route to the “correct” circuit g∗(z) = siz . The utility
of this model M∗ can be written as∑

z∈Range(ϕ)

∑
q∈ϕ−1(z)

uq((g∗ ◦ ϕ∗)(q)) ≥
∑

z∈Range(ϕ)
niz ,z.

Using the second part of Lemma A.2,

∑
z∈Range(ϕ)

niz ,z ≥ Ω
(

|Q|
k

)
− O

(
|Z| log k +

√
|Q||Z| log k +

√
|Q| log(|Φ|)

)
.

Bounding distortion. Let us now adopt the shorthand:

A = k · O(
√

|Q||Z| log k + |Z| log k +
√

|Q| log(|Φ|))

Since we want |Q| − A ≥ Ω(1), we will choose, subject to k ≤ |S0|,

k = Θ
(

|Q|√
|Q||Z| log |Q| + |Z| log |Q| +

√
|Q| log |Φ|

)
.

We can thus lower bound

max
M∗∈{(ϕ∗,g∗,S0)|ϕ∗∈Φ,g∗:Z→S0}

Eq∼D [u(q, M∗(q))]
Eq∼D [u(q, M(q))] ≥ Ω

(
k(|Q| − A)
|Q| + A + 1

)

≥ Ω̃
(

min
{

|S0|, |Q|√
|Q|(log |Φ| + |Z|) + |Z|

})
.

B Omitted experimental details
Our experiments are performed on the AIME 2024 [MAA24], Berkeley MATH [HBK+21], and LiveBench
(dated October 21, 2024) [WDR+24] datasets, all of which are publicly licensed. Our experiments are
performed on models belonging to the Gemini 2.0 family, including the Gemini-2.0-Flash and Gemini-2.0-
Flash-Thinking models.
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B.1 Experimental details for Figure 4.1a.

For this experiment, we selected five questions from each of the following datasets: AIME 2024, Berkeley
MATH test (PRM800K test split), LiveBench Reasoning Zebra Puzzles, LiveBench Reasoning Spatial
Reasoning, and LiveBench Reasoning Web-of-Lies-v2 (all LiveBench questions dated October 21, 2024).
We ran both the Qwen 2.5-7B-Instruct and Deepseek-R1-Distill-Qwen-2.5-7B models with a temperature
of 0.5 and a maximum token limit of 400,000, terminating upon encountering a stop token. We introduced
three types of perturbations to the model outputs:

1. “Not” Insertion: Every 100 tokens, we inserted the word “not”.

2. “Meow” Insertion: Every 100 tokens, we inserted the phrase “*MEOW *”.

3. Omission: Every 100 tokens, we deleted five consecutive characters, starting from the fifth character
before the current head and ending at the tenth character before the head.

For this experiment, the offset for the “Omissions” perturbations was chosen to avoid directly deleting
newly generated tokens, which would have no effect on the model’s output.

In contrast to some existing experiments on the adversarial robustness of reasoning models, e.g.
[ZNB+25], this experiment focuses on corruptions to a model’s generated chains-of-thought, rather than
adversarial manipulations of user queries.

B.2 Experimental details for Figure 4.1b.

For this experiment, we selected two questions from each of the following datasets: 2024 AIME, Berkeley
MATH (PRM800K test split), LiveBench Reasoning Zebra Puzzles, LiveBench Reasoning Web-of-Lies-v2,
and LiveBench Reasoning Spatial Reasoning. We use Gemini 2.0 Pro (exp 02-05), with light spot-checking,
to identify and categorize instances of backtracking in the Deepseek R1 model’s responses. This process
consists of:

1. Identify all potential instances of backtracking, and determine whether each instance was a genuine
case of backtracking.

2. Analyze the surrounding text to determine if it was necessary (i.e., correcting a genuine error).

3. Subcategorize unnecessary instances as attempting to fix a non-error, expressing concern about a
non-error, or unnecessarily changing strategy.

In Figure 4.1b, we categorized unnecessary instances of backtracking into one of three categories:

• Attempts to Fix Non-Error: The model attempts to correct a part of its reasoning that was
already correct.

• Concern About Non-Error: The model expresses doubt or uncertainty about a correct step
without identifying a specific error.

• Unnecessarily Changes Strategy: The model abandons a valid line of reasoning and adopts a
different approach without a clear reason.

Original Question

In this question, assume each person either always tells the truth or always lies. Luna is at the
barbershop... Does the person at the farm tell the truth? Think step by step, and then put your
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answer in bold as a list of three words, yes or no (for example, yes, no, yes). If you don’t know,
guess.

Category 1: Attempts to Fix Non-Error

...let me clarify:
- The person at the farm says the person at the amusement park lies.
- The person at the amusement park tells the truth.
Therefore, the farm person’s statement is false, meaning the farm person lies.
But earlier, the person at the farm says the person at the amusement park lies, which is true because
the amusement park tells the truth. Wait, no. If the farm person says the amusement park lies, and the
amusement park tells the truth, then the farm person is lying. So the farm person lies.
...

Category 2: Concern About Non-Error
...
Quan: At the zoo, which tells the truth.
Maya: At the farm. The person at the farm says the person at the amusement park lies. But since the
amusement park tells the truth, the person at the farm must be lying. So Maya lies.
Now, Maya says the person at the farm lies. Since Maya lies, the opposite is true, so the person at the
farm tells the truth. Wait, but earlier I thought the farm person says the amusement park lies, which is
true, so the farm person tells the truth. So that’s consistent.
...

Category 3: Unnecessarily Changes Strategy
...
First, I’ll list out all the places and the people associated with them.
- Skate Park: The person there tells the truth. ... - Airport: The person says the person at the zoo tells
the truth. - Zoo: The person tells the truth.
Wait, this seems a bit confusing. Let me try to organize this better.
First, identify who is where and what they say.
1. Skate Park: Person tells the truth. 2. Barbershop: Person tells the truth. 3. Nia: At the cafe, which
tells the truth.
...

B.3 Experimental details for Figure 4.3

For this experiment, we selected 50 questions and answers from the PRM800K split of the Berkeley MATH
dataset and 50 questions and answers from the test split of the LiveBench dataset. For each question, we
generated 10 responses from the Gemini 2.0 Flash-001 model at a high temperature (1.9) and a maximum
token limit of 8192. This high temperature was used to encourage diverse responses. We then scored
all 500 responses and filtered out all incorrect answers. From the remaining responses, we identified a
correct answer without any instances of backtracking and a correct answer with backtracking. Backtracking
instances were identified by using Gemini 2.0 Flash-001 (at temperature 0 and max tokens 8192) to search
for phrases indicative of backtracking (e.g., "Wait," "Let me check," "However," etc.). We then presented
these pairs of responses (succinct non-backtracking vs. lengthy backtracking) to Gemini 2.0 Pro, acting
as an evaluator, and asked it to choose a preferred response according to one of two possible labeler
instructions: the first closely mirrors the RLHF instructions used in [OWJ+22]; the latter is a minimal
set of instructions asking the model to exercise its own judgment. The results, presented in Figure 4.3,
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strongly indicate a preference for the shorter, non-backtracking responses, even though both responses in
each pair were correct.

C Additional figures

C.1 Robustness to Perturbations

For completeness, we provide below in Table 1 the numbers depicted in Figure 4.1a.

Table 1: Accuracy (with Standard Error) and Percentage Change from Baseline for Model Variants

Model Qwen2.5-7B-Instruct DeepSeek-R1-Distill-Qwen-7B
“Not” Insertions 28 % (±3.83 %) [-30%] 56 % (±4.05 %) [0%]
“Meow” Insertions 28 % (±3.83 %) [-30%] 44 % (±4.07 %) [-21%]
Omissions 24 % (±3.57 %) [-40%] 48 % (±4.08 %) [-14%]
Baseline 40 % (±4.00 %) 56 % (±4.05 %)

C.2 RLHF Simulation

We further conducted two variations of the experiment depicted in Figure 4.3. In the “Min-to-Min” variant,
we compared the shortest non-backtracking correct answer against the shortest backtracking correct
answer, controlling for response length. Even with this control, we observed a consistent preference for
non-backtracking approaches, suggesting that the preference goes beyond simply favoring brevity. In the
“Thinking” variant, we replaced Gemini 2.0 Pro with Gemini 2.0 Flash Thinking for our comparisons.
Interestingly, this variant showed an even stronger preference for non-backtracking approaches on the
LiveBench dataset (74-78% for non-backtracking compared to only 19% for backtracking).

C.3 Additional Examples of Backtracking

LiveBench Web-of-Lies-v2 Question and Deepseek R1’s Response

In this question, assume each person either always tells the truth or always lies. The person at the campground
says the person at the train station tells the truth... Does the person at the movie theater tell the truth? Does the
person at the campground tell the truth? Think step by step, and then put your answer in **bold** as a list of
three words, yes or no (for example, **yes, no, yes**). If you don’t know, guess.

Okay, let me try to work through this logic puzzle step by step. There are a lot of statements here, so I need to
organize the information carefully. Let’s start by listing out all the given facts and statements, and then see how
they connect. First, the people involved and their locations: Mateo is at the library, Olivia is at the train station,
Beatriz is at the cafe, Grace is at the shopping mall, Kehinde is at the movie theater, Charlie is at the campground,
and Zara is at the aquarium... says the person at the library (Mateo) lies. Campground (Charlie): Also, the
person at the campground tells the truth. (Wait, this is stated as a fact? Let me check again. The last bullet point
says: "The person at the campground tells the truth. Charlie is at the campground." So that’s a given fact. So
Charlie is a truth-teller. Wait, that’s important. So the campground person (Charlie) is a truth-teller. Therefore,
his statements are true. So that’s a key starting point. Wait, let me confirm. The list includes "The person at the
campground tells the truth." So that’s a fact given in the problem, not a statement made by someone. So Charlie
is a truth-teller. Got it.
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Variant Instructions LiveBench MATH
BT Non-BT BT Non-BT

Original Standard 41% 52% 22% 78%
Short 30% 70% 6% 94%

Min-to-Min Standard 44% 56% 28% 72%
Short 30% 70% 22% 78%

Thinking Standard 19% 74% 28% 72%
Short 19% 78% 22% 78%

Table 2: Preference comparisons between backtracking (BT) and non-backtracking (Non-BT) re-
sponses across different labeler instructions and datasets. We tested three experimental variants: 1)
Original - comparing shortest non-backtracking correct vs. longest backtracking correct answers, 2)
Min-to-Min - comparing shortest non-backtracking correct vs. shortest backtracking correct answers
to control for response length, and 3) Thinking - using Gemini 2.0 Flash Thinking instead of Gemini
2.0 Pro for comparison. Non-backtracking approaches consistently achieve higher accuracy across all
variants, particularly with shorter instructions, highlighting the persistent tension between robustness
mechanisms and performance.

Figure C.1: Deepseek R1’s response to a LiveBench Reasoning question; the model double-checks a stated
fact.

LiveBench Math Question and Model Response

Triangle QAC has side lengths in arithmetic progression, and the smallest side has length 6. If the triangle has an
angle of 120◦, what is the area of QAC?
(A) 20

√
2 (B) 14

√
2 (C) 8

√
6 (D) 15

√
3 (E) 12

√
3

If you cannot determine the correct multiple-choice answer, take your best guess. Once you have your answer,
please duplicate that letter five times in a single string. For example, if the answer is F, then write FFFFF.

Okay, so I need to solve this problem about triangle QAC with sides in arithmetic progression, the smallest side is
6, and there’s a 120-degree angle. The answer choices are given, so I need to figure out the area. Let me start by
understanding the problem step by step.
...
If the sides are 6, 10, 14, with the angle opposite 14 being 120 degrees. Then using area formula: (1/2) ∗ 6 ∗ 10 ∗
sin(120◦) = 30 ∗ (

√
3/2) = 15 ∗

√
3. Yes, that’s correct.

Alternatively, maybe we can compute the area using Heron’s formula to verify. Let’s try that. Heron’s formula
states that area =

√
s(s − a)(s − b)(s − c), where s is the semi-perimeter. Compute semi-perimeter s =

(6 + 10 + 14)/2 = 30/2 = 15. Then area =
√

15 ∗ (15 − 6) ∗ (15 − 10) ∗ (15 − 14) =
√

15 ∗ 9 ∗ 5 ∗ 1 =√
15 ∗ 45 =

√
675 =

√
225 ∗ 3 = 15 ∗

√
3. So same answer. Therefore, 15

√
3 is correct, which is option D.

Therefore, the answer is D, 15
√

3.
**Final Answer**

Figure C.2: Deepseek R1’s response to a LiveBench Reasoning question. An example of exploring
alternative solution paths.

27



D Prompts

D.1 RLHF Instructions

Prompt for Detecting Backtracking

You are analyzing a solution to a math problem. Your task is to search for if the solution contains
any instances of "backtracking" - where the solver thinks they might have made an error, goes back,
and double checks/corrects/redoes a step. This will often be denoted by a comment like "actually,"
"wait," "hm", "let me reconsider". We expect that only 10% of solutions will contain backtracking.
# Math Question
‘‘‘
Question
‘‘‘
# Solution
‘‘‘
Solution
‘‘‘
# Response Format Please structure your response as follows:
‘‘‘
# Your Chain of Thought
# Evidence
(If "Yes", quote specific parts of the solution that show backtracking. If "No", briefly explain why no
backtracking was observed.)
# Contains Backtracking
(Yes or No)
‘‘‘

Prompt for Detecting Backtracking Part 2

Please structure your output now as JSON, saying nothing else. Use the following format:
‘‘‘json
{

"contains_backtracking": bool,
"evidence": str

}
‘‘‘

Standard RLHF Instructions

You are given a text-based description of a task, submitted by a user. This task description may be
in the form of an explicit math question. You will be given two text outputs, intended to help the
user with their task. Your job is to evaluate these outputs to ensure that they are helpful, truthful,
and correct. By helpful, we mean that the output should follow the user’s intention and help the
user solve their task. Some examples of helpful behavior: • Writing in clear language. • Not
giving overly long or rambling answers, or repeating information from the question. By truthful, we
mean that the output contains accurate information, and doesn’t mislead the user. Some examples
of truthful behavior: • Not producing clearly false information. • Avoid generating misleading
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information, or information with questionable authenticity. By correct, we mean that the output
should be mathematically correct and provide a correct answer to the question. Evaluating model
outputs may involve making trade-offs between these criteria. These trade-offs will depend on the
task. Use the following guidelines to help select between outputs when making these trade-offs: For
most tasks, being correct is more important than being helpful. So in most cases, rate an output
that’s more correct higher than an output that’s more helpful. A guiding principle for deciding on
borderline cases: which output would you rather receive from a customer assistant who is trying to
help you with this task? Ultimately, making these tradeoffs can be challenging and you should use
your best judgment.
# User Query
‘‘‘
Query
‘‘‘
# Solution A
‘‘‘
Model Response A
‘‘‘
# Solution B
‘‘‘
Model Response B
‘‘‘

Short RLHF Instructions

You are performing RLHF data labeling for a language model. Below is a math question and two
solutions provided by different models: Solution A and Solution B. Both solutions are correct. Your
task is to determine which solution is better.
# Math Question
‘‘‘
Query
‘‘‘
# Solution A
‘‘‘
Model Response A
‘‘‘
# Solution B
‘‘‘
Model Response B
‘‘‘
# Evaluation
Which solution is better: Solution A or Solution B? Please choose the better solution and briefly
explain your reasoning.
# Response Format
Please structure your response as follows. PROVIDE A COMPLETE RESPONSE.
‘‘‘
# Better Solution
(Choose either "Solution A" or "Solution B")
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# Reasoning
(Briefly explain why you chose the better solution)
‘‘‘

RLHF Instructions Part 2

Please structure your output now as JSON, saying nothing else. Use the following format:
‘‘‘json
{

"better_solution": str (either "Solution A" or "Solution B")
}
‘‘‘

D.2 LM-Based Scoring

We use the same LM-based scoring as [ZAG25]. Given a tuple consisting of a question, ground-truth
solution, and candidate response, we grade the correctness of the candidate response by querying a
Gemini-v2.0-Flash model to compare the candidate and ground-truth solutions. This involves providing
the question, the correct ground-truth solution, and the candidate response, and asking the model to
deliberate on the correctness of the candidate response. These queries are all processed with temperature
zero. The prompts, which can be found in [ZAG25], ask the language model to (1) identify the final
answer of the given response, (2) identify the final answer of the reference (ground truth) response, and
(3) determine whether the final answer of the given response satisfactorily matches that of the reference
response, ignoring any non-substantive formatting disagreements. In line with convention, we instruct our
scoring system to ignore the correctness of the logic used to reach the final answer and rather only judge
the correctness of the final answer. The model is asked to label all non-sensical and incomplete responses
as being incorrect.

D.3 Backtracking Detection

Prompt 1

I want to count how often my model (who is still rather dumb) backtracks unnecessarily. Your job is
to help me with a specific task. Start by helping me by identifying every instance of where the model
believes it needs to be cautious about something or might have made an error, and backtracks to
either double check or attempt to correct something. Instances of backtracking are usually denoted
by "Wait", "Let me check", etc. 1. Examples of backtracking include the model believing it might
have made an error and double-checking or attempting to fix it, the model believing its approach is
invalid or incorrect or a dead-end and attempting to change its strategy. 2. Expressions of concern
that are *not* followed by the model attempting to check or correct something are not backtracks.
Provide a detailed chain of thought for each potential instance of backtracking before ruling on
whether it is actually a backtrack.

Prompt 2

For each instance of backtracking that you have found, determine if the backtracking is superfluous.
We say that a backtracking is superfluous if any of the following holds: * The model backtracks
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because it believes it made an error, and you verify that the model did not actually make an explicit
error. * The model backtracks because it is concerned or cautious about having made an error, and
you verify that the model did not actually make an explicit error. * The model backtracks because it
is concerned its current approach is wrong or a dead-end, and you verify that the model’s approach
is not actually wrong or a dead-end. If the backtracking is indeed superfluous, then categorize
it into one of the following categories: * Category 1: ’Attempts to Fix Non-Error’ * Category 2:
’Concern About Non-Error’ * Category 3: ’Unnecessarily Changes Strategy’ * Category 4: ’Other’
Question:
‘‘‘
Question
‘‘‘
Reference Answer:
‘‘‘
Answer
‘‘‘
Model Response:
‘‘‘
Model Response
‘‘‘

Prompt 3

Now, provide your final counts in a JSON format, saying nothing else. Structure your output as
follows:
‘‘‘
{"num_not_superfluous": 0, "num_superfluous": 0, "num_category_1": 0,
"num_category_2": 0, "num_category_3": 0, "num_category_4": 0}
‘‘‘

31


	Introduction
	Related works

	A formal perspective on post-training
	Limits of preference data
	Warm-up: A failure case for RLHF
	A more general lower bound

	Reasoning as a case study
	Robustness as reasoning strategy
	Preference learning suppresses robustness

	Discussion
	Acknowledgments
	Omitted proofs
	Proof of Theorem 3.3
	Proof of theorem:boundedcomputationformalnoise

	Omitted experimental details
	Experimental details for fig:modelcomparison.
	Experimental details for fig:deepseekbacktrackspie.
	Experimental details for fig:rlhfinstructionscomparison

	Additional figures
	Robustness to Perturbations
	RLHF Simulation
	Additional Examples of Backtracking

	Prompts
	RLHF Instructions
	LM-Based Scoring
	Backtracking Detection


