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Abstract
Calibration measures quantify how much a forecaster’s predictions violates calibration, which

requires that forecasts are unbiased conditioning on the forecasted probabilities. Two important
desiderata for a calibration measure are its decision-theoretic implications [KPLST23] (i.e.,
downstream decision-makers that best-respond to the forecasts are always no-regret) and its
truthfulness [HQYZ24] (i.e., a forecaster approximately minimizes error by always reporting the
true probabilities). Existing measures satisfy at most one of the properties, but not both.

We introduce a new calibration measure termed subsampled step calibration, StepCEsub, that
is both decision-theoretic and truthful. In particular, on any product distribution, StepCEsub is
truthful up to an O(1) factor whereas prior decision-theoretic calibration measures suffer from
an e−Ω(T )-Ω(

√
T ) truthfulness gap. Moreover, in any smoothed setting where the conditional

probability of each event is perturbed by a noise of magnitude c > 0, StepCEsub is truthful
up to an O(

√
log(1/c)) factor, while prior decision-theoretic measures have an e−Ω(T )-Ω(T 1/3)

truthfulness gap. We also prove a general impossibility result for truthful decision-theoretic
forecasting: any complete and decision-theoretic calibration measure must be discontinuous and
non-truthful in the non-smoothed setting.

1 Introduction
Probabilistic forecasts play a central role in data-driven decision-making across broad application
domains including finance, meteorology, and medicine [MW84, DF83, WM68, JOKOM12, KSB21,
VCV15, BF+02, CAT16]. One of the greatest forms of utility provided by high-quality forecasting
is that it enables downstream agents to confidently base their decision-making on the forecasts
without any other knowledge of the future. For example, a weather station’s forecast of the
probability of rain in the evening provides utility by informing individuals that may be debating
whether to bring an umbrella to dinner. A related and widely studied requirement of forecasting is
calibration [Bri50, Daw82, FV98], which requires that predicted probabilities align with long-run
empirical frequencies of events. Calibration requires, for example, that it rains 70% of the days
where the weather station forecasts a 70% chance of rain. Importantly, any downstream agent that
bases their rational decision-making on perfectly calibrated forecasts will not incur any positive
regret [FH21].

While perfect calibration is generally unachievable, there exist a number of calibration measures,
such as expected calibration error (ECE) [FV98], smooth calibration error (SCE) [KF08], and
U-Calibration (UCal) [KPLST23], which formalize a notion of approximate calibration and quantify
deviations from perfect calibration. U-Calibration is a calibration measure of particular significance
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for decision-making applications as it is defined as the worst regret that a rational agent can incur
by blindly following a forecaster [KPLST23]. In contrast, most other calibration measures, such as
smooth calibration error, are not “decision-theoretic” in that they do not provide guarantees for the
regret of downstream agents.

Because the Bayes optimal classifier is perfectly calibrated, it seems natural to view calibration
as incentivizing a forecaster to produce predictions that are consistent with their beliefs. This is not
the case: forecasters that know the future are incentivized by most calibration measures to produce
non-truthful predictions [FH21, QV21, HQYZ24]. For example, a forecaster may publicly forecast a
50% chance of rain even if they know for certain that there is a 100% chance of rain. To this end,
[HQYZ24] proposed a set of desiderata for a calibration measure that includes, among common
sense requirements like completeness (correct predictions have low error) and soundness (incorrect
predictions have high error), a notion of truthfulness: a calibration measure should not penalize
forecasters that know the future for predicting the true probabilities of events. [HQYZ24] formalizes
truthfulness by defining a calibration measure having a truthfulness gap as the asymptotic separation
between the expected value of a calibration measure on a truthful forecaster and on a strategic
forecaster, when both know exactly the probability with which future events will occur. They also
show that there exists a simple modification of smooth calibration error that is sound, complete,
and truthful: compute smooth calibration error over randomly subsampled timesteps rather than
the entire time horizon. However, the resulting calibration measure, like smooth calibration error, is
not decision-theoretic in that it provides no meaningful guarantees for downstream agents.

In contrast, the U-Calibration measure is decision-theoretic but not truthful. This means
that minimizing the expected worst-case regret of a downstream agent requires intentionally
misrepresenting one’s knowledge of future events. This is in stark contrast to the maximization of
downstream utilities, which always incentivizes an aligned forecaster to predict consistently with
their beliefs [Bri50]. The literature leaves unresolved whether there exists any decision-theoretic
calibration measure that both provides no-regret guarantees for downstream agents and satisfies the
usual desiderata of truthfulness, soundness and completeness.

There are reasons to believe such a “best of all worlds” calibration measure is not possible.
First, the technique used by [HQYZ24] to derive a truthful calibration measure from the Smooth
Calibration Error measure [KF08] does not appear to suffice when applied to the U-Calibration
measure. Second, the best responses of downstream agents are typically discontinuous in the forecasts
they are given, and discontinuities are intimately connected with non-truthfulness [HQYZ24]. This
raises the questions:

Is there a calibration measure that both provides decision-theoretic guarantees and
incentivizes honest forecasting?
Is there a fundamental conflict between minimizing the regret of downstream agents and
being truthful?

In this work, we show that the answer to both questions can be “Yes”: there is a fundamental
conflict between truthfulness and decision-theoretic guarantees—but not with smoothed analysis,
under which we can design a calibration measure that is the best of all worlds.

1.1 Overview of Results

U-Calibration is far from truthful. We identify two sources of non-truthfulness in U-Calibration
that the subsampling technique of [HQYZ24] does not remedy. The first source arises from the
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discontinuity of U-Calibration error. The second source is an incentive for forecasters to hedge their
predictions, i.e., exaggerate their uncertainty, and materially contributes to the non-truthfulness of
U-Calibration even under smoothed analysis.

As a result, even with subsampling and smoothed analysis, U-Calibration exhibits a truthfulness
gap. We say a calibration measure has an α-β truthfulness gap, which we define formally in (4), if it
gives a truthful forecaster an error of ≥ β but the optimal strategic forecaster’s error is below α.
Propositions 4.2, 4.5, and 4.6, Informally. Both the U-Calibration measure UCal and its
subsampled variant UCalsub suffer from an O(

√
T )-Ω(T ) truthfulness gap due to the discontinuity of

UCal, and an e−Ω(T )-Ω(poly(T )) truthfulness gap due to the hedging incentives of UCal.
We also prove a general impossibility result that suggests the non-truthfulness of U-Calibration is,
to a degree, unavoidable. We later show that this result can be softened with smoothed analysis.
Proposition 4.3, Informally. For any calibration measure, at least one of the following must be
true:

• It is not complete: consistently forecasting a 50% chance of heads given a sequence of T fair
coins does not yield an O(

√
T ) error.

• It is not decision-theoretic: it does not always upper bound the regret of downstream agents.

• It is not truthful: there is an O(
√

T )-Ω(T ) truthfulness gap.

Step calibration error. We introduce step calibration: a sound, complete, and decision-theoretic
calibration measure that provides no-regret guarantees for all downstream agents. Given a sequence
of events x1, ..., xT ∈ {0, 1} and predictions p1, ..., pT ∈ [0, 1], the step calibration error is defined as

stepCE(x, p) := sup
α∈[0,1]

∣∣∣∣∣
T∑

t=1
(xt − pt) · 1 [pt ≤ α]

∣∣∣∣∣ .
Step calibration is equivalent, up to a constant factor, to a variant of V-Calibration that uses a
slightly different baseline to disincentivize hedging behavior by penalizing excessively conservative
probabilistic forecasts (Fact 5.1). In addition to step calibration being a complete and sound
calibration measure, we also demonstrate an algorithm that achieves an Õ(

√
T ) step calibration

error for the adversarial prediction setting.
Proposition 5.2 and Theorem 5.13, Informally. The step calibration error is sound, complete,
and decision-theoretic. Moreover, there is a forecasting algorithm that guarantees an expected step
calibration error of O(

√
T log T ), even if the events are adversarially and adaptively chosen.

Truthfulness under smoothed analysis. We show that—under smoothed analysis—the impos-
sibility of simultaneously providing decision-theoretic guarantees and truthfulness largely disappears.
At a high-level, smoothing negates an adversary’s ability to exploit the inherently discontinuous
nature of a downstream agent’s decision-making. Importantly, we show that the “subsampled”
variant of step calibration,

stepCEsub(x, p) := E
S∼Unif(2[T ])

[
sup

α∈[0,1]

∣∣∣∣∣
T∑

t=1
(xt − pt) · 1 [pt ≤ α ∧ t ∈ S]

∣∣∣∣∣
]

,
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is truthful under smoothed analysis.
We say that a calibration measure is (α, β)-truthful gap if, given any prior distribution over the

sequence of events, the error incurred by the truthful forecaster is upper bounded by the optimal
strategic forecaster’s error, up to a factor of α and and additive term of β; see Equation (4) for a
formal definition.

Theorem 5.6, Informally. Subsampled step calibration error is (O(
√

log(1/c)), polylog(T/c))-
truthful when each conditional probability is drawn from a distribution with density ≤ 1/c.

This O(
√

log(1/c)) factor is tight for stepCEsub. For non-smoothed product distributions, we can
obtain a stronger truthfulness result showing that stepCEsub is (O(1), 0)-truthful (Proposition 5.12).
stepCEsub also retains the desiderata of stepCE, and is decision-theoretic, sound, and complete, and
admits an Õ(

√
T ) algorithm in the adversarial setting. This is because, as we show in Lemma A.1,

1
2stepCE(x, p) ≤ stepCEsub(x, p) ≤ 1

2stepCE(x, p) + O(
√

T ).

1.2 Related Work

Most closely related to our work are the previous studies of sequential binary calibration with respect
to various calibration measures. The seminal work of [FV98] showed that asymptotic calibration
can be achieved even for adversarially chosen events. Implicit in their paper is a sublinear rate of
O(T 2/3) on the ECE incurred by the forecaster; a more detailed proof was given by [Har22]. On the
lower bound side, an Ω(

√
T ) bound is trivial and the first non-trivial lower bound of Ω(T 0.528) was

shown by [QV21]. A recent breakthrough of [DDF+24] improved the upper bound to O(T 2/3−ε) for
some constant ε > 0, and gave the best known lower bound of Ω(T 0.54389).

The analogous question has been studied for other calibration measures, including smooth
calibration [KF08, QZ24], U-Calibration [KPLST23], distance from calibration [QZ24, ACRS25],
calibration decision loss [HW24], and subsampled smooth calibration [HQYZ24]. These calibration
measures relax the ECE in different ways, so that the forecaster can achieve a faster rate of Õ(

√
T ),

circumventing the super-
√

T lower bounds for the ECE.
The systematic study of calibration measures was initiated by [BGHN23], who focused on

the offline setting and proposed the distance from calibration as a ground truth. Their work
identified calibration measures that are continuous and consistent (i.e., being polynomially related
to the distance from calibration). Subsequent work studied calibration measures that satisfy other
natural axioms, including being decision-theoretic [KPLST23, NRRX23, RS24, HW24] and being
truthful [HQYZ24]. Remarkably, the distance from calibration, while being a natural measure, is
neither decision-theoretic nor truthful in the sequential setting.

The truthfulness of calibration measures is also intimately connected to the study of multicali-
bration [HJKRR18], which designs calibration measures that incentivize forecasters to “truthfully”
predict the true probabilities of each feature by evaluating calibration error over many feature
subsets—a practice similar to [HQYZ24]’s use of subsampling to enforce truthfulness and algorith-
mically linked to Blackwell approachability [Bla56, Fos99, Har22, HJZ23]. Truthfulness can also be
viewed as enforcing an online, multi-timestep notion of outcome indistinguishability [DKR+21].

Smoothed analysis was introduced by Spielman and Teng [ST04, ST09] for analyzing the “typical”
runtime of the simplex method. [KST09] introduced a smoothed analysis model for supervised
learning, in which the data distribution is a product distribution over {0, 1}n with marginal
probabilities randomly perturbed. This circumvents hard instances that are specific for the uniform
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distribution but easily learnable under the perturbed distribution. Subsequent work studied tensor
decomposition [BCMV14] and decision tree learning [BDM20, BLQT21] in similar setups.

More closely related to our work are the smoothed analysis for online learning introduced
by [RST11]. A recent series of work extends this setting to adaptive adversaries, showing that
online learning against a smoothed adversary is not much harder than learning in the offline (batch)
setup [HRS20, HRS24, BDGR22, HHSY22, BS22, BP23, BSR23, BST23]. In these models, the
smoothed analysis limits the adversary’s ability of concentrating the probability mass at a “hard
region” in the instance space. As a result, the learner may circumvent the canonical hard instance
of threshold functions, which is easily learnable in the offline setting, and cannot be learned in
an online setting without smoothing. Our work applies the smoothed analysis to avoid the large
truthfulness gap in the non-smoothed setting following the same intuition.

2 Preliminaries

2.1 Sequential Prediction and Calibration

Sequential prediction. In the basic (non-smoothed) prediction setup, a sequence of events
x ∈ {0, 1}T is sampled from a distribution D. At each time step t ∈ [T ], the forecaster makes a
prediction pt ∈ [0, 1], after which xt is revealed. Formally, a deterministic forecaster is a function
A : ⋃T

t=1{0, 1}t−1 → [0, 1], where A(b1, b2, . . . , bt−1) specifies the forecaster’s prediction at step
t upon observing x1:(t−1) = b1:(t−1). We will write (x, p) ∼ (D,A) to denote sampling events
x ∈ {0, 1}T and predictions p ∈ [0, 1]T from the joint distribution naturally induced by distribution
D and forecaster A, i.e., by sampling x ∼ D and setting pt = A(x1, x2, . . . , xt−1) for each t ∈ [T ].
We could have defined the forecaster to be randomized or a function of both the outcomes x1:(t−1)
and its own predictions p1:(t−1), but restricting to deterministic functions of the outcomes x1:(t−1)
comes without loss of generality.

The smoothed setting. The prediction setting above can be equivalently viewed as the nature
specifying the conditional probability of xt = 1 given x1, x2, . . . , xt−1. We will also consider a
smoothed setting, where each conditional probability is perturbed by a noise of magnitude c > 0.
Formally, the nature specifies a mapping P : ⋃T

t=1{0, 1}t−1 7→ ∆c, where ∆c is the family of
distributions over [0, 1] with densities bounded by 1/c everywhere. At each step t, the nature realizes
p⋆

t ∼ P(x1, x2, . . . , xt−1) and credibly reveals the value of p⋆
t to the forecaster.1 The forecaster

predicts pt, and the event xt is sampled from Bernoulli(p⋆
t ) and revealed. Formally, the forecaster’s

prediction pt is a function of both x1:(t−1) and p⋆
t , i.e., A : ⋃T

t=1({0, 1}t−1 × [0, 1])→ [0, 1].
Note that the non-smoothed setting—in which the nature specifies a fixed distribution D over

{0, 1}T —can be viewed as a “0-smoothed” setting where each P(b1, b2, . . . , bt−1) is the degenerate
distribution at value Prx∼D

[
xt = 1 | x1:(t−1) = b1:(t−1)

]
. Furthermore, as in the non-smoothed

setting, the nature P and the forecaster A naturally induce a joint distribution over the triple
(x, p⋆, p), denoted by sampling (x, p⋆, p) ∼ (P,A) (or a subset thereof) in the rest of the paper.

1In practice, this corresponds to the forecaster acquiring certain side information about xt, thus changing their
belief of p⋆

t = Pr [xt = 1 | observations]. The smoothness assumption would then correspond to assumptions on the
side information, which might ensure that the distribution of p⋆

t is not too spiky.
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Calibration measures. A calibration measure CMT : {0, 1}T × [0, 1]T → [0, T ] quantifies the qual-
ity of a forecaster’s prediction. We omit the subscript T when it is clear from context. The expected
penalty incurred by forecasterA on distributionD is defined as errCM(D,A) := E(x,p)∼(D,A) [CM(x, p)].
For the smoothed setting, we analogously define errCM(P,A) := E(x,p)∼(P,A) [CM(x, p)].

One would naturally expect a calibration measure to be both complete (accurate predictions
lead to a small penalty) and sound (inaccurate predictions receive a large penalty). We adopt a
variant of the definition in [HQYZ24]. In the following, 1⃗T denotes the T -dimensional all-1 vector.

Definition 2.1 (Completeness and soundness [HQYZ24]). A calibration measure CM is complete
if: (1) For any x ∈ {0, 1}T , predicting the events x gives CMT (x, x) = 0; (2) For any α ∈ [0, 1],
predicting the constant probability α gives Ex1,...,xT ∼Bernoulli(α)

[
CMT (x, α · 1⃗T )

]
= oα(T ); (3) For

any p ∈ [0, 1]T that is perfectly calibrated with respect to x ∈ {0, 1}T , CMT (x, p) = o(T ). The
calibration measure is sound if: (1) For any x ∈ {0, 1}T , CMT (x, 1⃗T − x) = Ω(T ); (2) For any
α, β ∈ [0, 1] such that α ̸= β, Ex1,...,xT ∼Bernoulli(α)

[
CMT (x, β · 1⃗T )

]
= Ωα,β(T ). Here, oα(·) and

Ωα,β(·) hide constant factors that depend on the subscripted parameters.

We strengthened the definition of completeness in [HQYZ24] by adding a third constraint—
perfectly calibrated predictions should receive a low (sublinear) penalty. To the best of our knowledge,
all calibration measures satisfy this condition, with most satisfying this condition with CM(x, p) = 0
while the SSCE introduced by [HQYZ24] satisfies this with CM(x, p) = O(

√
T ).

2.2 Decision-Theoretic Calibration

Consider a decision-making setting where an agent acts on the basis of the forecaster’s predictions.
Formally, consider a repeated game where, at each round t, an agent chooses an action at ∈ A
informed by the forecaster’s prediction pt. The agent’s utility at time t is a function u : A×{0, 1} →
[−1, 1] of its action at and the event xt. In this setup, the agent assumes that pt is an accurate
forecast of the probability that xt occurs and thus selects at to maximize Ex∼Bernoulli(pt)[u(at, x)].
One benefit of calibrated forecasts is that agents can make decisions according to the forecasts
and be no-regret [FH21]. That is, the agent’s expected cumulative utility ∑t u(at, xt) when given
calibrated forecasts p1:T will never be worse than when given a base rate forecaster which predicts
pt = 1

T

∑T
t=1 xt for all t.

Providing forecasts with no-regret guarantees for agents with any utility is equivalent to providing
forecasts that satisfy the no-regret property with respect to any (piecewise linear) proper scoring rule
[KPLST23]. A (bounded) scoring rule is a function S : {0, 1}× [0, 1]→ [−1, 1], where S(x, p) denotes
the loss incurred by the forecaster, when it predicts value p ∈ [0, 1] on an outcome that turns out to
be x ∈ {0, 1}. A scoring rule S is proper if, for any α ∈ [0, 1], the function p 7→ Ex∼Bernoulli(α) [S(x, p)]
is minimized at p = α, i.e., predicting the true probability minimizes the expected loss. The U-
Calibration error of [KPLST23] quantifies the mis-calibration using the worst possible external
regret:

UCal(x, p) := sup
S

[
T∑

t=1
S(xt, pt)− inf

β∈[0,1]

T∑
t=1

S(xt, β)
]

, (1)

where the supremum is taken over all proper scoring rules S.
More generally, we refer to any calibration measure CM as being decision-theoretic if, for all

events x and predictions p, the calibration measure is lower bounded by U-Calibration up to a
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universal constant factor: CM(x, p) ≥ Ω(1) · UCal(x, p). A decision-theoretic calibration measure
upper bounds the external regret of any agent that acts on the forecaster’s predictions.

V-Calibration. We will work with a calibration measure known as V-Calibration [KPLST23]
that is more technically convenient. V-Calibration is a modification of U-Calibration obtained from
limiting the supremum in its definition (Equation (1)) to a narrow class of scoring rules of the form

Sα(x, p) := (α− x) · sgn(p− α) (2)

for any α ∈ [0, 1]. Formally, the V-Calibration error is defined as

VCal(x, p) := sup
α,β∈[0,1]

[
T∑

t=1
Sα(xt, pt)−

T∑
t=1

Sα(xt, β)
]

. (3)

Despite its simpler form, V-Calibration error is equivalent to U-Calibration error up to constant
factor:

Lemma 2.2 (Theorem 8 of [KPLST23]). For any x ∈ {0, 1}T and p ∈ [0, 1]T , it holds that

1
2UCal(x, p) ≤ VCal(x, p) ≤ UCal(x, p).

We can rewrite the V-Calibration measure into an alternative form without the scoring rules.
We prove the following proposition in Appendix A.1.

Proposition 2.3. The V-Calibration error takes the alternative form

VCal(x, p) = 2 · sup
α∈[0,1]

max{X(α)
− − αN

(α)
− , αN

(α)
+ −X

(α)
+ },

where N
(α)
− := ∑T

t=1 1 [pt < α], N
(α)
+ := ∑T

t=1 1 [pt > α], X
(α)
− := ∑T

t=1 xt · 1 [pt < α], and X
(α)
+ :=∑T

t=1 xt · 1 [pt > α].

2.3 Truthfulness

Calibration measures are often seen as measuring how close a forecaster’s predictions are to the true
probabilities that events occur. However, even if one knows the exact probability that an event xt

will occur, calibration does not necessarily incentivize one to predict truthfully [HQYZ24]. Consider
the truthful forecaster for the non-smoothed setting specified by D ∈ ∆({0, 1}T ),

Atruthful(D)(b1, b2, . . . , bt−1) := Pr
x∼D

[
xt = 1 | x1:(t−1) = b1:(t−1)

]
,

which can be argued to be the only forecaster that makes the “right” predictions on distribution D.
Given a reasonable calibration measure CM, one might expect the error of the truthful forecaster to
be close to the optimal error OPTCM(D) := infA errCM(D,A), where A ranges over all deterministic
forecasters. This property is known as truthfulness [HQYZ24], where we say that a calibration
measure CM is (α, β)-truthful if, for every D ∈ ∆({0, 1}T ),

errCM(D,Atruthful(D)) ≤ α · OPTCM(D) + β. (4)
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Conversely, CM is said to have an α-β truthfulness gap if, for some distribution D, OPTCM(D) ≤ α
and errCM(D,Atruthful(D)) ≥ β.

In smoothed settings where the conditional probabilities are sampled according to P and revealed
to the forecaster, the truthful forecaster, Atruthful, simply maps (b1:(t−1), p⋆

t ) to p⋆
t for any t ∈ [T ]

and (b1:(t−1), p⋆
t ) ∈ {0, 1}t−1 × [0, 1]. We define OPTCM(P) := infA errCM(P,A), and a CM as being

(α, β)-truthful if errCM(P,Atruthful) ≤ α · OPTCM(P) + β. We similarly define the α-β truthfulness
gap for smoothed settings.

U-Calibration is known to not be a truthful calibration measure [HQYZ24]. This might be
counterintuitive since, by definition, truthful forecasting minimizes the expected penalty for each
fixed proper scoring rule. However, after taking a supremum over all proper scoring rules, the
truthful forecaster ceases to be optimal for the resulting measure.
Proposition 2.4 (Proposition A.3 of [HQYZ24]). The U-Calibration error has an O(1)-Ω(

√
T )

truthfulness gap.
One example of a truthful calibration measure is the Subsampled Smooth Calibration Error

(SSCE) introduced by [HQYZ24]. SSCE is a variant of the smooth calibration error calibration
measure introduced by [KF08]: smCE(x, p) := supf∈F

∑T
t=1 f(pt)(xt − pt), where F is the family of

1-Lipschitz functions from [0, 1] to [−1, 1]. SSCE is defined by subsampling a subset of the time
horizon, and evaluating the Smooth Calibration Error on it. Formally, letting Unif(S) denote the
uniform distribution over a finite set S and x|S denote the |S|-dimensional vector formed by the
entries of x indexed by S:

SSCE(x, p) := E
S∼Unif(2[T ])

[smCE(x|S , p|S)] = E
y∼Unif({0,1}T )

[
sup
f∈F

T∑
t=1

yt · f(pt) · (xt − pt)
]

. (5)

In light of Proposition 4.3, since SSCE is complete and truthful, it cannot be decision-theoretic.

3 Technical Overview

3.1 Non-truthfulness of U-Calibration and Its Variants

The non-truthfulness of the U-Calibration error (Proposition 2.4) comes from the incentive for a
dishonest forecaster to “patch up” their previous mis-calibration. Specifically, [HQYZ24] considered
a length-T sequence that consists of T/2 independent random bits followed by T/2 ones. In this case,
the truthful forecaster predicts 1/2 in the first half, and typically incurs an Ω(

√
T ) bias on those

bits. This further translates into an Ω(
√

T ) U-Calibration error. On the other hand, a strategic
forecaster may deliberately predict a biased value of 5/8 on the first half, and continue predicting
5/8 on the second half until the bias is close to 0.2 The resulting U-Calibration error can then be
bounded by O(1) in expectation.

This O(1)-Ω(
√

T ) truthfulness gap, however, would vanish once we apply the subsampling
technique of [HQYZ24]. The subsampled version, UCalsub, evaluates the U-Calibration error on
a random subset of the horizon. This introduces a Θ(

√
T ) error in the resulting penalty, so the

strategic forecaster at best outperforms the truthful one by a constant factor. One might naturally
wonder whether UCalsub is truthful in general. Unfortunately, as we outline below, there exist two
additional “failure modes” of the U-Calibration error that cannot be remedied by subsampling alone.

2This happens with high probability, as the mean of the first half concentrates around 1/2 < 5/8, while the mean
of the entire sequence concentrates around 3/4 > 5/8.
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Example 1: Non-truthfulness due to discontinuity. We start by noting that the U-Calibration
error, UCal(x, p), is not continuous in p. Suppose that, for some small ε > 0, we have

(xt, pt) =
{

(1, 1/2− ε), t ≤ T/2,

(0, 1/2 + ε), t > T/2.

Note that p is almost calibrated: p̃ = (1/2, 1/2, . . . , 1/2) is entry-wise close to p, and perfectly
calibrated with respect to x, which implies UCal(x, p̃) = 0. However, UCal(x, p) is much larger:
Consider the equivalent formulation of the V-Calibration error in Proposition 2.3 and take α = 1/2.
There are N− = T/2 steps on which pt < α, and the outcomes on those steps sum up to X− = T/2.
By Lemma 2.2, we have UCal(x, p) ≥ VCal(x, p) ≥ 2(X− − αN−) = Ω(T ). Taking ε → 0+ gives
triples (x, p, p̃) such that ∥p− p̃∥∞ → 0 but UCal(x, p) = Ω(T ) and UCal(x, p̃) = 0 are far away.

This implies that any complete and decision-theoretic calibration measure CM must be dis-
continuous. For the triple (x, p, p̃) constructed as above, completeness (Definition 2.1) implies
CM(x, p̃) = o(T ) while being decision-theoretic requires CM(x, p) ≥ Ω(1) · UCal(x, p) = Ω(T ).
Taking ε→ 0+ shows that CM is discontinuous.

The example above does not immediately give the O(
√

T )-Ω(T ) truthfulness gap in Proposi-
tion 4.2. Towards showing that the truthful forecaster incurs an Ω(T ) U-Calibration error, we need
to design a sequence of true probabilities p⋆

1, p⋆
2, . . . , p⋆

T ≈ 1/2 and a threshold α ∈ [0, 1], such that
xt = 1 whenever p⋆

t < α and xt = 0 whenever p⋆
t > α. This is very unlikely to happen if each xt is

independently sampled from Bernoulli(p⋆
t ).

However, when nature picks each p⋆
t based on the previous outcomes x1:(t−1), the hoped-for

property can be guaranteed via a simple binary search. At step t = 1, the nature starts with an
interval [l1, r1] = [1/2− ε, 1/2 + ε] and picks p⋆

1 = (l1 + r1)/2 as the middle point. After realizing
x1 ∼ Bernoulli(p⋆

1), if x1 = 1, the nature updates [l2, r2]← [p⋆
1, r1]; otherwise, [l2, r2]← [l1, p⋆

1]. If the
nature repeats this T steps, we can verify that, for α := (lT +1 +rT +1)/2 and every t ∈ [T ]: (1) p⋆

t < α
implies xt = 1; (2) p⋆

t > α implies xt = 0. Then, a similar argument shows that truthful forecasting
leads to UCal(x, p⋆) = Ω(T ). Furthermore, this argument is robust to subsampling, i.e., we also have
UCalsub(x, p⋆) = Ω(T ). In contrast, a strategic forecaster might choose to predict pt = 1/2 at every
step. Since each p⋆

t is in [1/2 − ε, 1/2 + ε], as long as ε = O(1/
√

T ), ∑T
t=1 xt would concentrate

around T/2±O(εT +
√

T ) = T/2±O(
√

T ). This shows that OPTUCal, OPTUCalsub = O(
√

T ), and
thus the O(

√
T )-Ω(T ) truthfulness gap.

We also further generalize this example to show that no calibration measure can be complete,
decision-theoretic and non-trivially truthful simultaneously.

Example 2: Non-truthfulness due to hedging. In the previous example, it is crucial that
nature specifies the conditional expectation of each bit (p⋆

t ) adaptively and with arbitrary precision.
Nevertheless, we show that UCal can still have a large truthfulness gap, even if the events are
drawn from a product distribution, the marginal probabilities of which are, in turn, drawn from
smooth distributions. At a high level, this is because the regret minimization for downstream agents
incentivizes hedging behaviors, where forecasters benefit from exaggerating the uncertainty of future
events.

We start with a simple, non-smoothed setting: For each t ∈ [T ], we set p⋆
t = 1/5 if t ≤ T/2, and

p⋆
t = 4/5 if t > T/2. Each xt is independently sampled from Bernoulli(p⋆

t ). As in Example 1, truthful
prediction typically leads to an Ω(

√
T ) bias at predicted values 1/5 and 4/5 each, and results in

an Ω(
√

T ) U-Calibration error. In contrast, the forecaster can significantly lower its penalty by
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predicting pt = 2/5 at t ≤ T/2 and pt = 3/5 at t > T/2 instead. In light of Lemma 2.2 and
Proposition 2.3, it suffices to upper bound the value of max{X− − αN−, αN+ −X+} for different
values of α. The worst cases are when α → (2/5)+ and α → (3/5)−. In the former case, we
have N− = T/2 while X− concentrates around (T/2) · (1/5) = T/10, and is typically (except with
probability e−Ω(T )) smaller than αN− = T/5. Similarly, when α ≈ 3/5, we have N+ = T/2 and X+
concentrates around (T/2) · (4/5) = 2T/5, and is extremely unlikely to be below αN+ = 3T/10.
This establishes the e−Ω(T )-Ω(

√
T ) truthfulness gap for UCal, and the same construction works for

the subsampled version UCalsub as well.
In the c-smoothed setting for some small constant c, instead of setting each p⋆

t to 1/5 or 4/5, we
draw each p⋆

t independently and uniformly from either [1/5− c, 1/5 + c] or [4/5− c, 4/5 + c]. Here, a
complication is that we cannot “catch” a high U-Calibration error by naïvely setting α = 1/5+c (and
applying Lemma 2.2 and Proposition 2.3). This is because we would end up with N− = T/2 and X−
concentrating around (T/2)·(1/5) = T/10, which is lower than αN− = (1/5+c)·(T/2) = T/10+Ω(T ).
Instead, we pick α = 1/5 − (1 − γ)c for some γ > 0 to be chosen. Since a uniform sample from
[1/5 − c, 1/5 + c] falls into [1/5 − c, α] with probability (γc)/2c = γ/2, we expect N− = Θ(γT ).
Furthermore, conditioning on that p⋆

t ∈ [1/5− c, α], xt has an expectation of (1/5−c)+α
2 = α− γc/2.

This shows that X− concentrates around (α−γc/2)·N− = αN−−O(γN−) up to a typical deviation of√
N− = Θ(

√
γT ). If we set γ = Θ(T −1/3) appropriately, the deviation would be Θ(

√
γT ) = Θ(T 1/3),

dominating the O(γN−) = O(γ2T ) = O(T 1/3) bias. This leads to an Ω(T 1/3) penalty in both UCal
and UCalsub. In contrast, the dishonest forecasts (that take value either 2/5 or 3/5) incur an e−Ω(T )

penalty under either UCal or UCalsub. This shows that neither UCal and UCalsub can be truthful
with sub-poly(T ) parameters, even in the Ω(1)-smoothed setting.

3.2 Truthfulness of Subsampled Step Calibration

Showing that stepCEsub is truthful involves two steps: lower bounding the optimal penalty that can
be achieved by a (possibly dishonest) forecaster, and upper bounding the penalty incurred by the
truthful forecaster. The first part follows from a result of [HQYZ24]: regardless of the forecasting
algorithm A, it holds that

E
(x,p)∼(D,A),y∼Unif({0,1}T )

[∣∣∣∣∣
T∑

t=1
yt · (xt − pt)

∣∣∣∣∣
]
≥ Ω(E [γ(VarT ])), (6)

where γ(x) =
{

x, x ≤ 1,
√

x, x > 1
and the random variable VarT is defined as VarT := ∑T

t=1 p⋆
t (1 −

p⋆
t ). Since the left-hand side of Equation (6) is a lower bound on stepCEsub(x, p), we also have

OPTstepCEsub(D) ≥ Ω(E [γ(VarT )]).
For simplicity, we assume in this section that VarT is always Ω(T ) (e.g., when every conditional

probability is bounded away from 0 and 1), and focus on upper bounding errstepCEsub(D,Atruthful) by
Õ(
√

T ). The general case that VarT can be much lower than T can be handled via a doubling trick
similar to the technique of [HQYZ24]. Also, we will upper bound stepCE instead of stepCEsub, as all
the analyses would naturally generalize to the subsampled version.

Warm-up #1: Product distributions. We start with the special case that D is a product
distribution, i.e., p⋆ ∈ [0, 1]T is fixed, and each xt is independently sampled from Bernoulli(p⋆

t ).
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Without loss of generality, p⋆
1 < p⋆

2 < · · · < p⋆
T . Then, the step calibration error can be written as:

stepCE(x, p⋆) = max
t∈[T ]

∣∣∣∣∣
t∑

i=1
(xi − p⋆

i )
∣∣∣∣∣ .

The above is simply the maximum deviation maxt∈[T ] |Xt| of a random walk (Xt)T
t=0 defined as

X0 = 0 and Xt = Xt−1 + (xt − p⋆
t ). Naïvely controlling its expectation via Hoeffding’s inequality

and a union bound would give an O(
√

T log T ) upper bound. We can shave the logarithmic factor
using Kolmogorov’s inequality, which gives

Pr
[
max
t∈[T ]

|Xt| ≥ τ

]
≤ E

[
X2

T

]
τ2 ≤ T

4τ2 .

Integrating this tail bound would then give E
[
maxt∈[T ] |Xt|

]
= O(

√
T ).

Warm-up #2: Truthfulness up to an O(
√

log(T/c)) factor. Unfortunately, the analysis
above does not immediately generalize to non-product distributions, as the conditional probabilities
of p⋆

1, . . . , p⋆
T are random and may not have a fixed ordering. One might resort to a “covering +

union bound” argument, but the family of step functions does not admit a finite covering (in the
ℓ∞ sense).

Fortunately, in the smoothed setting in which each p⋆
t is randomly drawn from a c-smoothed

distribution, a simple discretization argument would suffice. Let ε := c/T 2 and consider an ε-net of
the interval [0, 1]: Vε := {0, ε, 2ε, . . . , 1}. We will relax stepCE(x, p⋆) into the following:

max
α∈Vε

∣∣∣∣∣
T∑

t=1
(xt − p⋆

t ) · 1 [p⋆
t ∈ [0, α]]

∣∣∣∣∣ . (7)

Suppose that the supremum over α ∈ [0, 1] in stepCE(x, p⋆) is achieved by some α⋆ ∈ [iε, (i+1)ε].
Then, the difference between the values of ∑T

t=1(xt − p⋆
t ) · 1 [p⋆

t ∈ [0, α]] at α⋆ versus at α′ = iε is at
most

T∑
t=1

1
[
p⋆

t ∈ (α′, α⋆]
]
≤

T∑
t=1

1 [p⋆
t ∈ [iε, (i + 1)ε]] ,

the number of steps on which p⋆
t falls into the interval [iε, (i + 1)ε] of length ε. Since each p⋆

t is
drawn from a distribution with density at most 1/c, Pr [p⋆

t ∈ [iε, (i + 1)ε]] ≤ ε/c = 1/T 2. It then
follows that the effect of replacing [0, 1] with the ε-net Vε is negligible.

It remains to upper bound the expectation of Equation (7). Since for each α ∈ Vε,
∑T

t=1(xt −
p⋆

t ) · 1 [p⋆
t ∈ [0, α]] is the outcome of a T -step martingale, applying Hoeffding’s inequality with a

union bound over Vε gives an upper bound of O(
√

T log |Vε|) = O(
√

T log(T/c)). Extending this to
stepCEsub shows that stepCEsub is truthful up to an O(

√
log(T/c)) factor.

Removing the polylog(T ) factor. We further tighten the multiplicative factor to
√

log(1/c) via
a chaining argument. Our technique amounts to controlling the maximum deviation maxt∈[T ] |Xt|
in a martingale (Xt)T

t=0 without applying Kolmogorov’s inequality, and rather applies a more
“combinatorial” analysis. This analysis turns out to be generalizable to non-product distributions.

As a warm-up, we revisit the toy problem below:
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Max-deviation of random walk: Consider the random walk (Xt)T
t=0 where X0 = 0

and Xt = Xt−1 ± 1 with equal probability. Prove that E
[
maxt∈[T ] |Xt|

]
= O(

√
T ).

While above would follow from Kolmogorov’s inequality and an integration, here is a different proof:
We consider≈ log2 T “levels” of random variables. The zeroth level consists of only XT−X0. The first
level contains XT−XT/2 and XT/2−X0. The second level contains XT−X3T/4, X3T/4−X2T/4, . . .. In
general, the i-th level divides the horizon into 2i blocks of length T/2i, and considers the displacement
within each block. Then, we note that each Xt can be written as the sum of at most ≈ log2 T terms,
at most one from each level. It follows that E

[
maxt∈[T ] |Xt|

]
is at most ∑log2 T

i=0 Yi, where Yi is the
expectation of the maximum absolute value among level i. Since level i contains 2i terms, each of
which is a sum of T/2i independent samples from Unif({±1}), Hoeffding’s inequality with a union
bound gives Yi = O

(√
(T/2i) log 2i

)
. Summing over all i shows E

[
maxt∈[T ] |Xt|

]
= O(

√
T ).

Here is how we apply the above to the analysis of the c-smoothed setting. We consider two
discretization of [0, 1]: Vc := {0, c, 2c, . . . , 1} and Vε := {0, ε, 2ε, . . . , 1} for ε = c/T 2. As argued
earlier, replacing the interval [0, 1] in stepCE with Vε comes with a negligible error. If we could
further replace Vε with Vc, we would be done: controlling the maximum over Vc only involves a
union bound over |Vc| = O(1/c) martingales, and leads to an O(

√
T log(1/c)) upper bound. Thus,

it remains to control the error when we replace Vε with Vc. We divide the interval [0, 1] into
sub-intervals of length c/2, c/4, c/8, . . . , ε = c/T 2. For each i between 1 and O(log T ), the i-th level
of the division consists of 2i/c intervals of length c/2i. For each level i and j ∈ [2i/c], we consider:

T∑
t=1

(xt − p⋆
t ) · 1

[
(j − 1) · (c/2i) ≤ p⋆

t ≤ j · (c/2i)
]

,

which is the outcome of a T -step martingale. Furthermore, since each p⋆
t is sampled from a

distribution with density ≤ 1/c, it falls into the length-(c/2i) interval with probability at most
2−i. Therefore, the contribution of the i-th level to the step calibration error is upper bounded by√

(2−iT ) · log(2i/c). Summing over all i gives the desired upper bound of O(
√

T log(1/c)).

3.3 Minimize Step Calibration in the Adversarial Setup

We sketch the proof of the Theorem 5.13 by giving a simple non-constructive argument for the
O(
√

T log T ) error rate; we derive an explicit and efficient algorithm in the actual proof.
We apply the minimax argument of [Har22] for minimizing the ℓ1 calibration error (also called

the ECE) in an adversarial prediction setting. First, we restrict the forecaster so that its prediction
is always a multiple of 1/

√
T . Then, we note that both the adversary and the forecaster have finitely

many deterministic strategies—each deterministic strategy of the adversary (resp. forecaster) maps
the history (all the previous outcomes and predictions) to the next outcome (resp. prediction). By
the minimax theorem, it suffices to show that, against any given, possibly randomized strategy of
the adversary, the forecaster can achieve an O(

√
T log T ) error with respect to stepCE.

In this scenario, at each step t, the forecaster can compute the conditional probability p⋆
t using

the adversary’s strategy. Then, the forecaster predicts pt obtained by rounding p⋆
t to the nearest

multiple of 1/
√

T . To control the resulting step calibration error, we note that there are only
O(
√

T ) values of α that need to be considered (namely, the multiples of 1/
√

T ). For each fixed
α, we can bound

∣∣∣∑T
t=1(xt − pt) · 1 [pt ≤ α]

∣∣∣ by the sum of two terms: one involving (xt − p⋆
t ) and
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another involving (p⋆
t − pt). Since |p⋆

t − pt| ≤ 1/
√

T for all t, the latter term is always O(
√

T ).
For the former, we apply a union bound over the O(

√
T ) values of α. The resulting bound would

scale as O(
√

T log T ). While this argument does not give an explicit algorithm, we can also cast
step calibration minimization as a Blackwell approachability problem [Bla56, Fos99] and obtain an
explicit algorithm using min-max game dynamics [Har22, HJZ23].

4 Non-truthfulness of U-Calibration
Previous observations of non-truthfulness in calibration measures centered around a specific source
of non-truthfulness: an incentive that calibration measures provide to forecasters to “cancel out”
previous errors in their forecast by intentionally mispredicting future events. This form of non-
truthfulness can be remedied by randomly subsampling which timesteps are included in the calibration
measure computation [HQYZ24].

In this section, we identify two new and qualitatively distinct sources of non-truthfulness in the
U-Calibration measure, neither of which can be remedied with subsampling alone. The first source
of non-truthfulness arises from the inherently discontinuous nature of the U-Calibration measure
and is largely inevitable: one can show that any reasonable calibration measure that provides
decision-theoretic guarantees must also be non-truthful due to discontinuity. However, this form of
non-truthfulness requires an adversary to precisely choose the event distribution D and, as we will
later see, largely disappears under smoothed analysis. The second source of non-truthfulness arises
from the incentive that U-Calibration provides to a forecaster to hedge their predictions, i.e., to
exaggerate their uncertainty in their predictions. This form of non-truthfulness remains even in the
smoothed setting.

4.1 Non-truthfulness from Discontinuity

The U-Calibration measure is discontinuous in a forecaster’s prediction. From a decision-theoretic
perspective, this is because an agent’s mapping from the forecaster’s prediction to an action is
usually discontinuous: a marginal change in the probability of an event occurring may result in an
agent switching actions and perhaps incurring significantly higher or lower regret. The following
proposition describes one such case.

Proposition 4.1. For any ε ∈ (0, 1/2) and even number T ∈ Z, there is a sequence of events
x1:T and predictions p1:T such that changing p1:T to a similar alternative set of predictions p̃1:T
where ∥p1:T − p̃1:T ∥∞ ≤ ε increases the U-Calibration measure from UCal(x1:T , p1:T ) = 0 to
UCal(x1:T , p̃1:T ) = Ω(T ).

Our proof of this proposition also shows that no calibration measure can be complete, continuous,
and decision-theoretic simultaneously.

Proof. We define the events x1:T and original predictions p1:T as (xt, pt) = (1, 1
2 − ε) for the first

half of timesteps t ∈ [T/2] and (xt, pt) = (0, 1
2 + ε) for the second half of timesteps t > T

2 . Recall the
equivalent form of the V-Calibration error from Proposition 2.3. For α = 1/2, there are N

(α)
− = T/2

steps on which pt < α, and the events on those steps sum up to X
(α)
− = T/2. It follows that

VCal(x, p) ≥ 2
(
X

(α)
− − α ·N (α)

−

)
= Ω(T ).
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This further implies UCal(x, p) = Ω(T ) due to the equivalence of UCal and VCal (Lemma 2.2).
On the other hand, the alternative predictions p̃1:T = 1

2 · 1⃗T would guarantee UCal(x, p) = 0 and
∥p− p̃∥∞ ≤ ε.

The discontinuity of the U-Calibration measure provides a source of non-truthfulness that cannot
be avoided with the subsampling technique of [HQYZ24]. The following proposition demonstrates
an O(

√
T )-Ω(T ) truthfulness gap for U-Calibration, as well as for its subsampled variant UCalsub:

UCalsub(x1:T , p1:T ) = E
S∼Unif(2[T ])

[UCal(x|S , p|S)] . (8)

Proposition 4.2. Both the U-Calibration measure UCal and its subsampled variant UCalsub suffer
from an O(

√
T )-Ω(T ) truthfulness gap.

Proof. We will analyze the truthfulness gaps of V-Calibration VCal and its subsampled version
VCalsub; the proposition would then follow from Lemma 2.2.

The distribution of events. Let ε ∈ (0, 1/4) be sufficiently small such that ε = O(1/
√

T ).
We now construct a distribution D such that the conditional probability p⋆

t at every timestep t is
guaranteed to fall into the interval [1

2 − ε, 1
2 + ε]. Let us define D as fixing p⋆

1 = 1
2 and, for all t ∈ [T ],

letting

p⋆
t+1 =

{
p⋆

t + ε
2t if xt = 1,

p⋆
t − ε

2t if xt = 0.

That is, distribution D adversarially sets the probabilities p⋆
t in a binary search fashion based on

the realizations of the preceding events x1:t−1.

Truthful forecasts give a linear penalty. By our adversarial construction of D, regardless
of the realization of (x, p⋆), the following holds for α⋆ := p⋆

T +1 and every t ∈ [T ]: (1) p⋆
t ̸= α⋆; (2)

p⋆
t < α⋆ implies xt = 1; and (3) p⋆

t > α⋆ implies xt = 0.
Towards lower bounding VCal(x, p⋆), we consider the equivalent formulation of the V-Calibration

error in Proposition 2.3 at α = α⋆. Our construction guarantees X
(α)
− = N

(α)
− and X

(α)
+ = 0. Since

α ∈ [1/2− ε, 1/2 + ε] ⊆ [1/4, 3/4], we have

X
(α)
− − α ·N (α)

− = (1− α) ·N (α)
− ≥ N

(α)
− /4

and
α ·N (α)

+ −X
(α)
+ = α ·N (α)

+ ≥ N
(α)
+ /4.

It follows that

max
{

X
(α)
− − αN

(α)
− , αN

(α)
+ −X

(α)
+

}
≥ max

{
N

(α)
− , N

(α)
+

}
/4 ≥ T/8.

By Proposition 2.3, VCal(x, p⋆) ≥ Ω(T ) always holds, which in turn gives errVCal(D,Atruthful(D)) =
Ω(T ).

To lower bound errVCalsub(D,Atruthful(D)), we note that the same argument as above gives

VCal(x|S , p⋆|S) ≥ Ω(|S|)

for every S ⊆ [T ]. Taking an expectation over S ∼ Unif(2[T ]) gives errVCalsub(D,Atruthful(D)) = Ω(T ).
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Dishonest forecasts with an O(
√

T ) penalty. On the other hand, constantly predicting 1/2
gives an O(

√
T ) error with respect to both VCal and VCalsub. To see this, we apply Proposition 2.3:

VCal(x, 1
2 · 1⃗T ) = 2 · sup

α∈[0,1]
max

{
X

(α)
− − αN

(α)
− , αN

(α)
+ −X

(α)
+

}
.

Since all predictions take value 1/2, we have

X
(α)
− − αN

(α)
− = 1 [α > 1/2] ·

(
T∑

t=1
xt − αT

)
≤
∣∣∣∣∣

T∑
t=1

xt −
T

2

∣∣∣∣∣
and

αN
(α)
+ −X

(α)
+ = 1 [α < 1/2] ·

(
αT −

T∑
t=1

xt

)
≤
∣∣∣∣∣

T∑
t=1

xt −
T

2

∣∣∣∣∣ .
Therefore, we have

VCal(x, 1
2 · 1⃗T ) ≤ 2

∣∣∣∣∣
T∑

t=1
(xt − 1/2)

∣∣∣∣∣ ≤ 2
∣∣∣∣∣

T∑
t=1

(xt − p⋆
t )
∣∣∣∣∣+ 2

∣∣∣∣∣
T∑

t=1
(p⋆

t − 1/2)
∣∣∣∣∣ .

Since p⋆
t ∈ [1/2− ε, 1/2 + ε] holds for every t ∈ [T ], the second term above is always at most

2εT = O(
√

T ). The first term is the deviation of a T -step martingale with bounded differences, and
is thus bounded by O(

√
T ) in expectation. Therefore, we have

OPTVCal(D) ≤ E
x∼D

[
VCal(x, 1

2 · 1⃗T )
]
≤ O(

√
T ).

Again, the argument above can be easily extended to show that

E
x∼D

[
VCal(x|S , 1

2 · 1⃗|S|)
]
≤ O

(√
|S|
)
≤ O(

√
T )

holds for every fixed S ⊆ [T ]. Taking an expectation over S ∼ Unif(2[T ]) gives

OPTVCalsub(D) ≤ E
x∼D,S∼Unif(2[T ])

[
VCal(x|S , 1

2 · 1⃗|S|)
]
≤ O(

√
T ).

This establishes the O(
√

T )-Ω(T ) truthfulness gaps for VCal and VCalsub and finishes the
proof.

We can generalize the proof of Proposition 4.2 beyond the U-Calibration measure to any decision-
theoretic calibration measure that satisfies the very weak condition of completeness (Definition 2.1).
Recall that a calibration measure is decision-theoretic if it upper bounds the external regret of
an agent that acts on the forecaster’s predictions (or equivalently upper bounds U-Calibration)
and a calibration measure is complete if it is low for a base-rate forecaster when all events occur
with the same constant probability. This generalization, stated formally in following proposition,
implies that—without smoothed analysis—the requirement of a calibration measure providing
decision-theoretic guarantees is directly at odds with that of being truthful.
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Proposition 4.3. Consider any complete decision-theoretic calibration measure CMT . Suppose that
its completeness guarantee for α = 1

2 takes the rate of f , i.e.,

E
x1,...,xT ∼Bernoulli(1/2)

[
CMT (x, 1

2 · 1⃗T )
]

= O(f(T )).

Then, CMT has a truthfulness gap of O(f(T ))-Ω(T ).

Proof. As in the proof of Proposition 4.2, we will define the distribution D by setting p⋆
1 = 1

2 and

p⋆
t+1 =

{
p⋆

t + ε
2t if xt = 1,

p⋆
t − ε

2t if xt = 0
for some small ε = O(f(T )/T 2). We therefore have from Proposition 4.2 that the truthful forecaster’s
U-Calibration measure is lower bounded by Ex∼D [UCal(x, p⋆)] ≥ Ω(T ). Because CMT is a decision-
theoretic calibration measure, it must upper bound the U-Calibration measure, meaning that

errCMT
(D,Atruthful(D)) = E

x∼D
[CMT (x, p⋆)] ≥ Ω

(
E

x∼D
[UCal(x, p⋆)]

)
≥ Ω(T ).

To upper bound the calibration measure for the non-truthful forecaster, we first observe that the
construction of D guarantees |p⋆

t −1/2| ≤ ε for all t ∈ [T ]. Thus, the total variation distance between
D and Unif({0, 1}T ) is O(εT ). Since CMT (·, ·) takes value in [0, T ], by our choice of ε = O(f(T )/T 2)
and the completeness of CM, we have

E
x∼D

[
CMT (x, 1/2 · 1⃗T )

]
≤ E

x∼Unif({0,1}T )

[
CMT (x, 1/2 · 1⃗T )

]
+ T ·O(εT ) = O(f(T )).

However, the existence of this conflict—and the proof of Proposition 4.3—hinges on the as-
sumption that an adversary has the ability to choose the event distribution D, in particular each
conditional probability p⋆

t , in an arbitrarily precise way so as to exploit discontinuity. As we will
later see, under smoothed analysis where an adversary has limited precision in choosing p⋆

t , this
inevitability of non-truthfulness for decision-theoretic measures largely disappears.

4.2 Non-truthfulness from Hedging

We now demonstrate a second source of non-truthfulness in the U-Calibration measure that arises
from the incentivization of hedging: forecasters can reduce their expected U-Calibration measure by
portraying their beliefs as being more uncertain than they truly are. This form of non-truthfulness
does not depend on the existence of an adversary that is able to choose the distribution D, or
equivalently p⋆

1:T , with high precision. It also cannot be remedied with the technique of randomly
subsampling timesteps.

One might expect that hedging, by introducing bias to a forecaster’s predictions, should increase
the U-Calibration measure. However, we can construct a setting, stated formally in the following
proposition, where hedging results in an Ω(T ) bias but a U-Calibration measure of 0. Moreover, we
can design this example to be asymmetric where the forecaster only hedges its predictions in one
direction, e.g., if it believes the event will likely occur.

Proposition 4.4. There is a sequence of events x1:T and predictions p1:T with zero U-Calibration
measure UCal(x, p) = 0 but linear bias

∣∣∣∑T
t=1(xt − pt)

∣∣∣ = Ω(T ).
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Proof. We will construct a simple example for T = 2, which can be repeated an arbitrary number of
times to attain the claim for arbitrary T . Consider the events x = (0, 1) and forecasts p = (0, 3/4).
To show that UCal(x, p) = 0, by Lemma 2.2 and Proposition 2.3, it suffices to prove that the
following holds for every α ∈ [0, 1]:

max
{

X
(α)
− − αN

(α)
− , αN

(α)
+ −X

(α)
+

}
≤ 0,

where N
(α)
− (resp., N

(α)
+ ) denotes the number of timesteps on which the prediction is strictly below

(resp., above) α, and X
(α)
− (resp., X

(α)
+ ) denotes the sum of the events on those steps. This can be

done via the following cases analysis:

• When α = 0, we have N− = X− = 0 and N+ = X+ = 1. This gives X− − αN− = 0 and
αN+ −X+ = −1 < 0.

• When α ∈ (0, 3/4), we have N− = 1, X− = 0 and N+ = X+ = 1. This gives X− − αN− =
−α < 0 and αN+ −X+ = α− 1 < 0.

• When α = 3/4, we have N− = 1, X− = 0, and N+ = X+ = 0. This gives X−−αN− = −α < 0
and αN+ −X+ = 0.

• When α ∈ (3/4, 1], we have N− = 2, X− = 1, and N+ = X+ = 0. This gives X− − αN− =
1− 2α < 0 and αN+ −X+ = 0.

Therefore, we have UCal(x, p) = 0. On the other hand, the total bias of the predictions is
|(x1+x2)−(p1+p2)| = 1/4. Repeated T/2 times, this gives a bias of T/8 = Ω(T ) and a U-Calibration
measure of 0.

This example demonstrates that the bias of hedging predictions does not negatively affect the
U-Calibration measure. On the other hand, hedging often provides an explicit advantage. For
example, hedging an honest prediction of p⋆

t = 1 down to pt = 3/4 may not incur any cost, but may
instead be of benefit for a previous or future timestep t′ where the event outcome is high variance
with p⋆

t′ = 3/4 and the forecaster seeks to “dilute” the variance. In this way, we can construct an
e−Ω(T )-Ω(

√
T ) truthfulness gap for the U-Calibration measure and its subsampled variant. Later,

we will extend this construction to the smoothed setting.

Proposition 4.5. Both the U-Calibration measure UCal and its subsampled version UCalsub have
an e−Ω(T )-Ω(

√
T ) truthfulness gap.

Proof. Again, we analyze V-Calibration rather than U-Calibration, i.e., we will establish the
truthfulness gap of VCal and VCalsub, and the proposition would then follow from Lemma 2.2.

Let T be an even number. Let p⋆ = (1
5 , 1

5 , . . . , 1
5 , 4

5 , 4
5 , . . . , 4

5) be the vector with T
2 copies of 1

5
and 4

5 each and D be the product distribution ∏T
t=1 Bernoulli(p⋆

t ). Similarly, let p be the alternative
“non-truthful” prediction (2

5 , 2
5 , . . . , 2

5 , 3
5 , 3

5 , . . . , 3
5) where again both 2

5 and 3
5 appear exactly T

2 times.
We will show that, under both VCal and VCalsub, the truthful forecaster Atruthful(D) that predicts
according to p⋆ receives an Ω(

√
T ) penalty, whereas predicting according to p leads to an e−Ω(T )

penalty.
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Truthful forecasts lead to an Ω(
√

T ) penalty. We start by showing that errVCal(D,Atruthful(D))
and errVCalsub(D,Atruthful(D)) are both lower bounded by Ω(

√
T ). Towards applying Proposition 2.3,

we fix α = 1/5 + ε for an arbitrarily small ε > 0, and aim to lower bound the quantity

X
(α)
− − α ·N (α)

− = X
(α)
− − (1/5 + ε) · T

2 ,

where N
(α)
− = T/2 is the number of timesteps on which the prediction is strictly smaller than

α = 1/5 + ε, and X
(α)
− = ∑T/2

t=1 xt is the sum of the T/2 events on those steps.
By definition of D, X

(α)
− follows the distribution Binomial(T/2, 1/5). Then, it holds with

probability Ω(1) that X
(α)
− ≥ (T/2) · (1/5) + Ω(

√
T ) = T/10 + Ω(

√
T ), i.e., X

(α)
− exceeds its mean

by Ω(
√

T ). Conditioning on this event, by Proposition 2.3, we have

VCal(x, p⋆) ≥ X
(α)
− − (1/5 + ε) · T

2 ≥ Ω(
√

T )− εT.

This implies that

errVCal(D,Atruthful(D)) = E
x∼D

[VCal(x, p⋆)] ≥ Ω(1) · [Ω(
√

T )− εT ].

Taking ε→ 0+ proves errVCal(D,Atruthful(D)) = Ω(
√

T ).
For VCalsub, we note that the argument above shows that, for any fixed S ⊆ [T ],

E
x∼D

[VCal(x|S , p⋆|S)] ≥ Ω
(√
|S ∩ [T/2]|

)
.

Then, over the randomness in S ∼ Unif(2[T ]), |S ∩ [T/2]| follows Binomial(T/2, 1/2). It follows that
ES∼Unif(2[T ])

[√
|S ∩ [T/2]|

]
= Ω(

√
T ), and

errVCalsub(D,Atruthful(D)) = E
x∼D,S⊆2[T ]

[VCal(x|S , p⋆|S)] = Ω(
√

T ).

Dishonest forecasts lead to an exponentially small penalty. Suppose that the forecaster
strategically predicts according to p = (2

5 , 2
5 , . . . , 2

5 , 3
5 , 3

5 , . . . , 3
5) instead. Again, we start with the

analysis for VCal. Let X1 := ∑T/2
t=1 xt and X2 := ∑T

t=T/2+1 xt denote the sums of the first and second
halves of the event sequence, respectively. Note that over the randomness in x ∼ D, X1 follows
Binomial(T/2, 1/5) and X2 follows Binomial(T/2, 4/5). By a Chernoff bound, with probability at
least 1− e−Ω(T ), the following three inequalities hold simultaneously:

X1 ≤
T

5 , X2 ≥
3T

10 ,
2T

5 ≤ X1 + X2 ≤
3T

5 . (9)

It remains to show that the inequalities above together imply VCal(x, p) = 0. Assuming this, since
the V-Calibration error is at most T , we would then have Ex∼D [VCal(x, p)] ≤ e−Ω(T ) · T = e−Ω(T )

as desired. By Proposition 2.3, it suffices to show that the inequalities in (9) together imply that,
for every α ∈ [0, 1],

max
{

X
(α)
− − α ·N (α)

− , α ·N (α)
+ −X

(α)
+

}
≤ 0.

This can be done via the following case analysis:
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• When α ∈ [0, 2/5), we have N
(α)
− = X

(α)
− = 0, N

(α)
+ = T and X

(α)
+ = X1 + X2. It follows that

X
(α)
− − α ·N (α)

− = 0 and α ·N (α)
+ −X

(α)
+ = αT − (X1 + X2) ≤ 2

5T − 2T

5 = 0.

• When α = 2/5, we have N
(α)
− = X

(α)
− = 0, N

(α)
+ = T/2 and X

(α)
+ = X2. It follows that

X
(α)
− − α ·N (α)

− = 0 and α ·N (α)
+ −X

(α)
+ = αT/2−X2 ≤

T

5 −
3T

10 < 0.

• When α ∈ (2/5, 3/5), we have N
(α)
− = N

(α)
+ = T/2, X

(α)
− = X1, and X

(α)
+ = X2. It follows

that
X

(α)
− − α ·N (α)

− = X1 − α · T

2 ≤
T

5 −
2
5 ·

T

2 = 0

and
α ·N (α)

+ −X
(α)
+ = αT/2−X2 ≤

3
5 ·

T

2 −
3T

10 = 0.

• The remaining cases that α = 3/5 and α ∈ (3/5, 1] hold by symmetry.

Therefore, we conclude that

OPTVCal(D) ≤ E
x∼D

[VCal(x, p)] ≤ e−Ω(T ).

Towards upper bounding OPTVCalsub(D), we analyze the quantity

E
x∼D

[
VCalsub(x, p)

]
= E

x∼D,S∼Unif(2[T ])
[VCal(x|S , p|S)] .

As in the analysis for VCal, we will identify a high-probability event (over the randomness in both x
and S) that: (1) happens with probability 1− e−Ω(T ); (2) implies VCal(x|S , p|S) = 0. It would then
immediately follow that Ex∼D

[
VCalsub(x, p)

]
= e−Ω(T ).

Let N1 := |S ∩ {1, 2, . . . , T/2}| (resp., N2 := |S ∩ {T/2 + 1, T/2 + 2, . . . , T}|) denote the number
of timesteps among the first half (resp., the second half) of the sequence that get subsampled into
S. Let X1 := ∑

t∈S xt · 1 [t ≤ T/2] and X2 := ∑
t∈S xt · 1 [t > T/2] denote the sum of the events on

those steps, respectively.
Note that each of N1, N2, X1 and X2 can be written as a sum of Ω(T ) independent Bernoulli

random variables. Furthermore, over the randomness in both x and S, we have E [N1] = E [N2] =
T/4, E [X1] = T/20 and E [X2] = T/5. Let ε := 1/40 be a small constant. By a Chernoff bound
and the union bound, the following conditions hold simultaneously with probability 1− e−Ω(T ):

• N1, N2 ∈ [T/4− εT, T/4 + εT ].

• X1 ≤ T/20 + εT and X2 ≥ T/5− εT .

• X1 + X2 ∈ [T/4− εT, T/4 + εT ].

It remains to show that, assuming the conditions above, we have VCal(x|S , p|S) = 0. Towards
applying Proposition 2.3, we analyze the quantity

max
{

X
(α)
− − α ·N (α)

− , α ·N (α)
+ −X

(α)
+

}
for α ∈ [0, 1] with respect to events x|S and predictions p|S :
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• When α ∈ [0, 2/5), we have

N
(α)
− = 0, X

(α)
− = 0, N

(α)
+ = N1 + N2, X

(α)
+ = X1 + X2.

It follows that
X

(α)
− − α ·N (α)

− = 0

and

α ·N (α)
+ −X

(α)
+ = α · (N1 +N2)− (X1 +X2) ≤ 2

5 ·
(

T

2 + 2εT

)
−
(

T

4 − εT

)
= − T

20 + 9
5εT < 0.

• When α = 2/5, we have

N
(α)
− = 0, X

(α)
− = 0, N

(α)
+ = N2, X

(α)
+ = X2.

It follows that
X

(α)
− − α ·N (α)

− = 0

and

α ·N (α)
+ −X

(α)
+ = 2

5 ·N2 −X2 ≤
2
5 ·
(

T

4 + εT

)
−
(

T

5 − εT

)
= − T

10 + 7
5εT < 0.

• When α ∈ (2/5, 3/5), we have

N
(α)
− = N1, X

(α)
− = X1, N

(α)
+ = N2, X

(α)
+ = X2.

It follows that

X
(α)
− − α ·N (α)

− = X1 − α ·N1 ≤
T

20 + εT − 2
5 ·
(

T

4 − εT

)
= − T

20 + 7
5εT < 0.

and

α ·N (α)
+ −X

(α)
+ = α ·N2 −X2 ≤

3
5 ·
(

T

4 + εT

)
−
(

T

5 − εT

)
= − T

20 + 8
5εT < 0.

• Finally, by symmetry, we have an upper bound of 0 in the cases that α = 3/5 and α ∈ (3/5, 1].

Therefore, we conclude that

OPTVCalsub(D) ≤ E
x∼D

[
VCalsub(x, p)

]
≤ e−Ω(T ).

By adding noises to the marginal probabilities, we can show that an e−Ω(T )-poly(T ) truthfulness
gap remains even if we assume a smoothed setting where an adversary cannot precisely choose the
conditional probabilities p⋆

1:T . Recall that, in the c-smoothed setting, the adversary is forced to
sample each conditional probability p⋆

t from a distribution with density upper bounded by 1/c.
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Proposition 4.6. Both the U-Calibration measure UCal and its subsampled version UCalsub have
an e−Ω(T )-Ω(T 1/3) truthfulness gap, even when the event distribution is a product distribution with
marginal probabilities perturbed by independent noises uniformly sampled from [−c, c] for some
constant c ∈ (0, 1/5).

Intuitively, the constructions of both Propositions 4.5 and 4.6 involve incentivizing forecasters to
exaggerate the uncertainty of their forecasts. Hedging one’s forecasts allows any and all downstream
agents to avoid paying for the variance of the events and attain zero regret with high probability.
Notably, this form of non-truthfulness that arises when studying decision-theoretic calibration
measures is qualitatively different from the non-truthfulness shown by [HQYZ24], which is more
concerned with incentivizing forecasters to dishonestly “patch up” previous erroneous forecasts than
with incentivizing forecasters to proactively hedge for (potentially future) uncertainty.

Proof. Let T be an even number. We construct a c-smoothed prior P by sampling each event
probability p⋆

t in the first half of timesteps (i.e., t ≤ T/2) from the uniform distribution over
[1
5 − c, 1

5 + c], and similarly sampling each p⋆
t independently and uniformly from [4

5 − c, 4
5 + c] for

t ≥ T/2 + 1. More formally, for every t ∈ [T ] and b1:(t−1) ∈ {0, 1}t−1, we have

P(b1:(t−1)) =
{

Unif([1
5 − c, 1

5 + c]), t ≤ T/2,

Unif([4
5 − c, 4

5 + c]), t ≥ T/2 + 1.

Dishonest forecasts with low penalties. Let p = (2
5 , 2

5 , . . . , 2
5 , 3

5 , 3
5 , . . . , 3

5) be the vector with
T/2 copies of 2

5 and 3
5 and represent the alternative “non-truthful” prediction. The analysis of the

non-truthful forecaster remains largely the same as in the proof of Proposition 4.5. This is because,
by drawing x ∈ {0, 1}T according to P, the marginal distribution of x remains the same as earlier,
i.e., x ∼ D := ∏T

t=1 Bernoulli(pt) where p = (1
5 , 1

5 , . . . , 1
5 , 4

5 , 4
5 , . . . , 4

5). It follows that

OPTUCal(P) ≤ E
x∼P

[UCal(x, p)] = E
x∼D

[UCal(x, p)] ≤ e−Ω(T ),

and OPTUCalsub(P) ≤ e−Ω(T ) by the same token.

Truthful forecasts give a high U-Calibration error. It remains to analyze the truthful
forecaster by lower bounding the expectation of UCal(x, p⋆) and UCalsub(x, p⋆). In light of Lemma 2.2
and Proposition 2.3, we let α := 1

5 − (1− 2γ)c ∈ [1
5 − c, 1

5 + c] for some γ ∈ [0, 1] to be chosen later,
and focus on lower bounding the quantity

X
(α)
− − α ·N (α)

− ,

where N
(α)
− = ∑T

t=1 1 [p⋆
t < α] is the number of steps on which the prediction is strictly below α,

and X
(α)
− = ∑T

t=1 xt · 1 [p⋆
t < α] is the sum of the events on those steps.

By our construction of P , for each t ∈ {1, 2, . . . , T/2}, p⋆
t is drawn independently and uniformly

from [1
5 − c, 1

5 + c]. It follows that

Pr [p⋆
t < α] =

α− (1
5 − c)

2c
= 2γc

2c
= γ,
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and N
(α)
− follows Binomial(T/2, γ). Furthermore, conditioning on that p⋆

t < α, p⋆
t is uniformly

distributed over [1
5 − c, α), which implies that the conditional probability of xt = 1 is (1

5 − c + α)/2 =
1
5 − (1− γ)c. Therefore, conditioning on the value of N

(α)
− , X

(α)
− follows Binomial(N (α)

− , 1
5 − (1− γ)c).

By a Chernoff bound, as long as γ = Ω(1/T ), N
(α)
− ∈ [γT/4, γT ] holds with probability Ω(1).

Furthermore, conditioning on the realization of N
(α)
− ∈ [γT/4, γT ], X

(α)
− has a conditional expectation

of
[

1
5 − (1− γ)c

]
·N (α)

− and a conditional variance of

N
(α)
− ·

[1
5 − (1− γ)c

]
·
[4

5 + (1− γ)c
]
≥ γT

4 ·
(1

5 − c

)
· 4

5 ≥ Ω(γT ),

where the last step applies c < 1/5. By a central limit theorem, it holds with probability at least
Ω(1) that

X
(α)
− ≥

[1
5 − (1− γ)c

]
·N (α)

− + 2
√

γT . (10)

Assuming that both N
(α)
− ∈ [γT/4, γT ] and (10) hold, for γ = T −1/3, we have

X
(α)
− − α ·N (α)

− ≥
[

1
5 − (1− γ)c

]
·N (α)

− −
[

1
5 − (1− 2γ)c

]
·N (α)

− + 2
√

γT

= 2
√

γT − γc ·N (α)
−

≥ 2
√

γT − γc · γT (N (α)
− ≤ γT )

≥ T 1/3. (γ = T −1/3, c ≤ 1)

Therefore, it holds with probability Ω(1) that X
(α)
− −α ·N (α)

− ≥ T 1/3. By Lemma 2.2 and Propo-
sition 2.3, we have

errUCal(P,Atruthful) = E
(x,p⋆)∼P

[UCal(x, p⋆)] ≥ 2 E
(x,p⋆)∼P

[
max{X(α)

− − α ·N (α)
− , 0}

]
= Ω(T 1/3).

Truthful forecasts give a high subsampled U-Calibration error. The analysis for UCalsub

is almost the same. Consider a random subset S ∼ Unif(2[T ]). To lower bound UCal(x|S , p⋆|S), we
examine the quantity

X
(α)
− − α ·N (α)

− ,

where α = 1
5 − (1− 2γ)c, N

(α)
− = ∑T

t=1 1 [t ∈ S ∧ p⋆
t < α], and X

(α)
− = ∑T

t=1 xt · 1 [t ∈ S ∧ p⋆
t < α].

For each t ∈ {1, 2, . . . , T/2}, the events t ∈ S and p⋆
t < α are independent and happen with

probabilities 1/2 and γ, respectively. Therefore, N
(α)
− follows Binomial(T/2, γ/2). Moreover, given

N
(α)
− , the conditional distribution of X

(α)
− is still Binomial(N (α)

− , 1
5 − (1− γ)c). Then, the rest of the

analysis goes through by considering the typical realization of N
(α)
− ∈ [γT/8, γT/2].

5 Step Calibration
In light of Proposition 2.3, V-Calibration (Equation (3)) corresponds to testing the predictions on
intervals of form [0, α) and (α, 1]: If, among the steps where the prediction is < α (resp., > α), the
actual fraction of ones is significantly higher (resp., lower) than α, we know that the predictions
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must be far from calibration. Naturally, we would get a stronger measure if, in the above comparison,
we replace α with the actual average of the predictions, and take an absolute value to penalize both
over- and under-estimation.

Formally, we consider the following calibration measure, which we term the step calibration
error :

stepCE(x, p) := sup
α∈[0,1]

∣∣∣∣∣
T∑

t=1
(xt − pt) · 1 [pt ≤ α]

∣∣∣∣∣ .
Compared with the smooth calibration error of [KF08], the step calibration error replaces the family
of Lipschitz functions with the family of “step functions”: {p 7→ 1 [p ≤ α] : α ∈ [0, 1]}.

The definition above is robust in the sense that, if we replace the step functions with the union of
a constant number of intervals, the resulting error only increases by a constant factor. The definition
above also has a decision-theoretic interpretation: If we replace the benchmark in V-Calibration
(i.e., infβ∈[0,1]

∑T
t=1 Sα(xt, β)) with the sum

T∑
t=1

E
x′

t∼Bernoulli(pt)

[
Sα(x′

t, pt)
]

=
T∑

t=1
(pt − α) · sgn(α− pt)

and add an additional absolute value, we get

sup
α∈[0,1]

∣∣∣∣∣
T∑

t=1
(xt − α) · sgn(α− pt)−

T∑
t=1

(pt − α) · sgn(α− pt)
∣∣∣∣∣ = sup

α∈[0,1]

∣∣∣∣∣
T∑

t=1
(xt − pt) · sgn(α− pt)

∣∣∣∣∣ ,
which has a similar form to stepCE, except that the step function is replaced with the sign function.
This definition can be interpreted as follows: Assuming that the bits were indeed draw from
Bernoulli(p1) through Bernoulli(pT ), we expect a loss of Ex′

t∼Bernoulli(pt) [Sα(x′
t, pt)] at each step t. If

our actual loss, ∑T
t=1 Sα(xt, pt), is significantly higher or lower, we are certain that the predictions

cannot be calibrated.
We prove in Appendix A.2 that the step calibration error is equivalent to the above variant of

V-Calibration up to a constant factor.

Fact 5.1. For any x ∈ {0, 1}T and p ∈ [0, 1]T ,

1
3 sup

α∈[0,1]

∣∣∣∣∣
T∑

t=1
(xt − pt) · sgn(α− pt)

∣∣∣∣∣ ≤ stepCE(x, p) ≤ sup
α∈[0,1]

∣∣∣∣∣
T∑

t=1
(xt − pt) · sgn(α− pt)

∣∣∣∣∣ .
5.1 Step Calibration Error is Complete, Sound and Decision-Theoretic

We show that the step calibration error is complete and sound in the sense of Definition 2.1.
Furthermore, it is decision-theoretic, i.e., stepCE always upper bounds the U-Calibration error up
to a constant factor.

Proposition 5.2. The step calibration error, stepCE, is complete and sound. Moreover, for any
x ∈ {0, 1}T and p ∈ [0, 1]T , it holds that

stepCE(x, p) ≥ 1
8UCal(x, p).
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Proof. We start by showing that stepCE is decision-theoretic. Let A be a shorthand for

sup
α∈[0,1]

max
{

X
(α)
− − αN

(α)
− , αN

(α)
+ −X

(α)
+

}
.

By Lemma 2.2 and Proposition 2.3, we have

A = 1
2VCal(x, p) ≥ 1

4UCal(x, p),

so it suffices to prove stepCE(x, p) ≥ A/2.

Step calibration is decision-theoretic. Note that, over all possible values of α ∈ [0, 1], the term
max

{
X

(α)
− − αN

(α)
− , αN

(α)
+ −X

(α)
+

}
only takes finitely many (concretely, O(T )) different values.

Thus, the supremum A can be achieved at some α∗ ∈ [0, 1], i.e.,

A = max
{

X
(α∗)
− − α∗N

(α∗)
− , α∗N

(α∗)
+ −X

(α∗)
+

}
.

We consider the following two cases, depending on which of the two terms above is larger.

Case 1: A = X
(α∗)
− − α∗N

(α∗)
− . If α∗ = 0, we have N

(α∗)
− = X

(α∗)
− = 0. Then, A = 0, and

stepCE(x, p) ≥ A/2 vacuously holds. If α∗ > 0, we can find β ∈ [0, α∗) such that (β, α∗) ∩
{p1, p2, . . . , pT } = ∅. Then, for every t ∈ [T ], pt < α∗ holds if and only if pt ≤ β. It follows that

stepCE(x, p) ≥
T∑

t=1
(xt − pt) · 1 [pt ≤ β]

=
T∑

t=1
(xt − pt) · 1 [pt < α∗] (pt < α∗ ⇐⇒ pt ≤ β)

≥
T∑

t=1
(xt − α∗) · 1 [pt < α∗] (pt < α∗ =⇒ xt − pt ≥ xt − α∗)

= X
(α∗)
− − α∗N

(α∗)
− = A,

where the first step relaxes the supremum in the definition of stepCE to a fixed term at β, and
removes the absolute value.

Case 2: A = α∗N
(α∗)
+ −X

(α∗)
+ . In this case, we note that

T∑
t=1

(pt − xt) · 1 [pt > α∗] ≥
T∑

t=1
(α∗ − xt) · 1 [pt > α∗] = α∗N

(α∗)
+ −X

(α∗)
+ = A.

Since 1 [pt > α∗] = 1 [pt ≤ 1]− 1 [pt ≤ α∗] holds for every t ∈ [T ], we have B1 −Bα∗ = A, where

B1 =
T∑

t=1
(pt − xt) · 1 [pt ≤ 1] and Bα∗ =

T∑
t=1

(pt − xt) · 1 [pt ≤ α∗] .

Then, either B1 or Bα∗ must have an absolute value of at least A/2. It follows that

stepCE(x, p) ≥ max
β∈{α∗,1}

∣∣∣∣∣
T∑

t=1
(xt − pt) · 1 [pt ≤ β]

∣∣∣∣∣ = max{|Bα∗ |, |B1|} ≥ A/2.
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Completeness and soundness. To verify the completeness, we note that stepCE is always upper
bounded by the expected calibration error (ECE) defined as

ECE(x, p) :=
∑

α∈[0,1]

∣∣∣∣∣
T∑

t=1
(xt − pt) · 1 [pt = α]

∣∣∣∣∣ .
This is because, for every α ∈ [0, 1], it holds that∣∣∣∣∣

T∑
t=1

(xt − pt) · 1 [pt ≤ α]
∣∣∣∣∣ ≤ ∑

α′∈[0,α]

∣∣∣∣∣
T∑

t=1
(xt − pt) · 1

[
pt = α′]∣∣∣∣∣ ≤ ECE(x, p).

Then, since the ECE is complete (e.g., [HQYZ24, Table 2]), stepCE is also complete.
Similarly, since stepCE is lower bounded by UCal up to a constant factor, stepCE inherits the

soundness of the U-Calibration error (e.g., [HQYZ24, Table 2]).

5.2 Step Calibration Error is Truthful After Subsampling

As a warm-up, we start by proving that the subsampled version of step calibration, stepCEsub,
is (α, β)-truthful for some parameters α, β = polylog(T/c) in the c-smoothed setting. Later, we
will improve the parameter α to O(

√
log(1/c)) and also prove its tightness (for the truthfulness of

stepCEsub).
Recall that in the c-smoothed setting, the conditional expectation of each xt (given x1:(t−1))

is sampled from a distribution with density upper bounded by 1/c (e.g., the uniform distribution
over an interval of length c). Formally, the setting is described by a function P : ⋃T

t=1{0, 1}t−1 →
∆c([0, 1]), where for each t ∈ [T ] and (x1, x2, . . . , xt−1) ∈ {0, 1}t−1, P(x1, x2, . . . , xt−1) specifies a
distribution over [0, 1]—with a density upper bounded by c—from which the conditional expectation
of xt|x1, x2, . . . , xt−1 is drawn. The sequence x ∈ {0, 1}T is determined sequentially as follows: For
each t ∈ [T ], we draw p⋆

t ∼ P(x1, x2, . . . , xt−1) and then draw xt ∼ Bernoulli(p⋆
t ). Furthermore, the

true conditional probability for the event xt = 1, p⋆
t , is observable by the forecaster. Thus, the

truthful forecaster always predicts p⋆
t at time t.

The c = Ω(1) regime. Towards showing that stepCEsub is truthful, we will lower bound the
optimal error that can be achieved on P (namely, OPTstepCEsub(P)) and upper bound the error
incurred by the truthful forecaster (namely, errstepCEsub(P,Atruthful)). When c = Ω(1) is a fixed
constant, we can easily obtain the following lower bound:

OPTstepCEsub(P) = Ω(
√

T ),

i.e., every forecaster must incur an Ω(
√

T ) penalty measured by stepCEsub in expectation. The
expectation above is over the randomness in the realized outcomes x as well as the forecaster that
generates the predictions p. To see this, we note that

stepCE(x, p) := sup
α∈[0,1]

∣∣∣∣∣
T∑

t=1
(xt − pt) · 1 [pt ∈ [0, α]]

∣∣∣∣∣ ≥
∣∣∣∣∣

T∑
t=1

(xt − pt)
∣∣∣∣∣ ,

and it follows that

stepCEsub(x, p) ≥ E
y∼Unif({0,1}T )

[∣∣∣∣∣
T∑

t=1
yt · (xt − pt)

∣∣∣∣∣
]

.
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Then, the results of [HQYZ24] lower bound the right-hand side above by E [γ(VarT )], where

VarT :=
T∑

t=1
p⋆

t (1− p⋆
t )

is the realized variance up to time T , and γ(x) := x · 1 [x ≤ 1] +
√

x · 1 [x > 1]. In the c = Ω(1)
regime, we can show that VarT ≥ Ω(T ) with high probability, which implies the Ω(

√
T ) lower bound.

It remains to show that, when c = Ω(1), truthful forecasts lead to an O(
√

T ) error with respect
to the stepCEsub measure. As before, it suffices to show this for stepCE, as the argument should
extend to the subsampled version easily. Via an easy “covering + union bound” argument, we can
prove an upper bound of

errstepCEsub(P,Atruthful) = E
(x,p⋆)∼P

[
stepCEsub(x, p⋆)

]
= O

(√
T log(T/c)

)
,

almost matching OPTstepCEsub = Ω(
√

T ) in the c = Ω(1) regime.

The small-c regime. The argument above, unfortunately, does not directly apply to the case
where c is small. This is because, in the worst case, VarT can be as low as Θ(cT ) (e.g., when each
conditional distribution follows the uniform distribution over [0, c]). As a result, we can at best
lower bound OPTstepCEsub by Ω(

√
cT ). Then, our upper bound on the stepCEsub incurred by the

truthful forecaster—E
[
stepCEsub(x, p⋆)

]
= O(

√
T log(T/c))—would be higher by a factor of

√
1/c.

Instead, we will replace both bounds—the lower bound on OPTstepCEsub(P) and the upper bound
on errstepCEsub(P,Atruthful)—with ones that depend on the realized variance of the distribution, i.e.,

VarT :=
T∑

t=1
p⋆

t (1− p⋆
t ).

It should be noted that the “right” way of defining VarT should be using p⋆
t , rather than using the

mean of the distribution P(x1, x2, . . . , xt−1). This is because revealing the value of p⋆
t ∼ P(x1:(t−1))

might significantly decrease the remaining variance in xt.3
The following lemma is implicit in [HQYZ24]:

Lemma 5.3 (Theorem 6.5 of [HQYZ24]). For any choice of P, it holds that

OPTstepCEsub(P) = Ω
(
E
P

[γ(VarT )]
)

,

where γ(x) := x · 1 [x ≤ 1] +
√

x · 1 [x > 1].
Proof. Note that

stepCE(x, p) = sup
α∈[0,1]

∣∣∣∣∣
T∑

t=1
(xt − pt) · 1 [pt ∈ [0, α]]

∣∣∣∣∣ ≥
∣∣∣∣∣

T∑
t=1

(xt − pt)
∣∣∣∣∣ .

It follows that

stepCEsub(x, p) ≥ E
y∼Unif({0,1}T )

[∣∣∣∣∣
T∑

t=1
yt · (xt − pt)

∣∣∣∣∣
]

,

so the rest of the proof follows from [HQYZ24] (which relaxes the SSCE to the same expression as
above).

3Consider the case that P(x1:(t−1)) is symmetric around 1/2 and puts most of the probability mass near 0 and 1.
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We can show that the stepCEsub incurred by the truthful forecaster nearly matches the above,
up to a multiplicative factor and an additive term of polylog(T/c):

Lemma 5.4. For any P that is c-smoothed, we have

errstepCEsub(P,Atruthful) ≤ O

(
E [γ(VarT )] ·

√
log(T/c) + log2(T/c)

)
,

where γ(x) := x · 1 [x ≤ 1] +
√

x · 1 [x > 1].

Combining Lemmas 5.3 and 5.4 shows that stepCEsub is (α, β)-truthful for α = O(
√

log(T/c))
and β = O(log2(T/c)) in any c-smoothed setting.

Proof sketch. In the definition of stepCE, we replace α ∈ [0, 1] in the supremum with a (c/T 2)-net
of [0, 1]. Note that the change in the calibration measure is bounded by the maximum number of
p⋆s that fall into the same length-(c/T 2) bin. This can be shown to be O(1) in expectation and will
not be dominating.

For each fixed choice of α (out of the O(T 2/c) choices), the quantity ∑T
t=1(xt−p⋆

t ) ·1 [p⋆
t ∈ [0, α]]

induces a martingale. Then, we apply the same doubling trick as in [HQYZ24]to bound its deviation
from zero. For the block in which the realized variance is roughly 2k (k = 0, 1, 2, . . . , O(log T )), we
take a union bound over O(T 2/c) martingales, each with ≤ T increments bounded between ±1 and
a total realized variance ≤ 2k. Freedman’s inequality and the union bound show that the maximum
deviation is at most O

(√
2k log(T/c) + log(T/c)

)
in expectation. Summing over k would then give

an upper bound of

E
[√

VarT

]
·O(

√
log(T/c)) + O(log T ) ·O(log(T/c)).

Finally, we note that
√

x ≤ γ(x) + 1 holds for every x ≥ 0, so the upper bound above can be
further relaxed to E [γ(VarT )] ·O(

√
log(T/c)) + O(log2(T/c)).

5.3 A Tighter Truthfulness Guarantee

We give a more refined analysis that improves the
√

log(T/c) multiplicative factor to
√

log(1/c) by
implementing a more involved covering strategy.

We start by noting that an Ω(
√

log(1/c)) factor is unavoidable; this follows from a “binary
search” construction similar to the one for the O(

√
T )-Ω(T ) truthfulness gap of U-Calibration

(Proposition 4.2).

Proposition 5.5. For any c ∈ [Θ(2−T ), Θ(1)], in the c-smoothed setting, the step calibration error
measure has an O(

√
cT + 1)-Ω(

√
T log(1/c)) truthfulness gap and the subsampled step calibration

error measure has an O(
√

T )-Ω(
√

T log(1/c)) truthfulness gap.

Proof. Without loss of generality, we assume that c ≤ 1
16 and T is divisible by 5

⌊
log2

1
8c

⌋
.
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Construction of P. We construct the c-smoothed setting P by specifying the distribution from
which each p⋆

t is drawn. We divide the timesteps [T ] into k + 1 epochs T1, . . . , Tk, Tk+1, where
k =

⌊
log2

1
8c

⌋
, epoch Tk+1 =

{
T
5 + 1, T

5 + 2, . . . , T
}

, and epoch Ti =
{

T (i−1)
5k + 1, T (i−1)

5k + 2, . . . , T i
5k

}
for all i ∈ [k]. This division is well-defined by our assumption that T is divisible by 5k.

For each i ∈ [k], every timestep t in epoch Ti will have the same distribution of p⋆
t : p⋆

t is uniformly
distributed over [wi − c

2 , wi + c
2 ], where wi is defined in terms of the realized events of the previous

epoch {xt}t∈Ti−1 : We set w1 = 1
2 and, for every i ≥ 2,

wi =
{

wi−1 + 1
2i+2 if µi−1 ≥ wi−1,

wi−1 − 1
2i+2 if µi−1 < wi−1,

where we use µi = 1
|Ti|

∑
t∈Ti

xt to denote the average outcome in epoch Ti. This guarantees that
|wi − wi′ | ≥ 2−(k+3) ≥ c for all i, i′ ∈ [k + 1] where i ̸= i′ and that every p⋆

t falls into the interval
[1/4, 3/4]. This in turn ensures α⋆ = wk+1 satisfies, for every i ∈ [k]: (1) wi /∈ [α⋆ − c, α⋆ + c], (2)
wi < α⋆ implies µi ≥ wi, and (3) wi > α⋆ implies µi < wi.

For the last epoch, which spans the last 4T/5 timesteps, we define p⋆
t to be sampled uniformly

from [0, c] for timesteps t ∈ [T/5 + 1, 3T/5] and p⋆
t to be sampled uniformly from [1 − c, 1] for

timesteps t ∈ [3T/5 + 1, T ].

Truthful forecaster. We will analyze the subsampled step calibration error of the truthful
forecaster, with the (non-subsampled) step calibration error bound following identically. We first
lower bound stepCEsub by fixing α = α⋆ and removing the absolute value:

stepCEsub(x, p⋆) = E
S∼Unif(2[T ])

[
sup

α∈[0,1]

∣∣∣∣∣
T∑

t=1
(xt − p⋆

t ) · 1 [p⋆
t ∈ [0, α] ∧ t ∈ S]

∣∣∣∣∣
]

≥ E
S∼Unif(2[T ])

[
T∑

t=1
(xt − p⋆

t ) · 1 [p⋆
t ∈ [0, α⋆] ∧ t ∈ S]

]
.

We next bound in expectation the right-hand summand for each epoch Ti individually. Fixing such
an epoch i and realization of previous outcomes x′

1:max Ti−1
where max Ti−1 is the last timestep of

epoch i− 1, we can lower bound

E
S∼Unif(2[T ])

(x,p⋆)∼P

∑
t∈Ti

(xt − p⋆
t ) · 1 [p⋆

t ∈ [0, α⋆] ∧ t ∈ S] | x1:max Ti−1 = x′
1:max Ti−1



= 1
2 E

(x,p⋆)∼P

∑
t∈Ti

(xt − wi) · 1 [wi ∈ [0, α⋆]] | x1:max Ti−1 = x′
1:max Ti−1


= 1

2 E
(x,p⋆)∼P

[
E

X∼Binomial(|Ti|,wi)
[max{X − |Ti| · wi, 0}] | x1:max Ti−1 = x′

1:max Ti−1

]

≥ 1
2 min

p∈[1/4,3/4]
E

X∼Binomial(|Ti|,p)
[max{X − |Ti| · p, 0}] .

In the above, the first step applies wi /∈ [α⋆ − c, α⋆ + c] and marginalizes out S. The second step
holds since wi ∈ [0, α⋆] if and only if µi ≥ wi, which is equivalent to ∑t∈Ti

xt ≥ |Ti| · wi. The
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last inequality follows from wi ∈ [1/4, 3/4]. To bound the last expectation, we first observe that
the variance σ2 of X ∼ Binomial(|Ti|, p) is at least σ2 ≥ 3

16 |Ti|. By the Berry-Esseen central limit
theorem, we have Pr[X − |Ti|p ≤ σ] ≤ Φ(1) + O(1/

√
|Ti|). Thus,

E
X

[max{X − |Ti| · p, 0}] ≥ σ · Pr[X − |Ti|p ≥ σ] ≥ Ω(σ) ≥ Ω
(√
|Ti|

)
.

We can thus bound the step calibration error in the first k epochs by

E
(x,p⋆)∼P,S∼Unif(2[T ])

 k∑
i=1

∑
t∈Ti

(xt − p⋆
t ) · 1 [p⋆

t ∈ [0, α⋆] ∧ t ∈ S]

 ≥ Ω
(

k∑
i=1

√
|Ti|

)
= Ω(

√
Tk).

By definition of P, in the last epoch k + 1, p⋆
t ∈ [0, α⋆] for the first 2T/5 timesteps and p⋆

t /∈ [0, α⋆]
for the last 2T/5 timesteps. Thus,

E
(x,p⋆)∼P,S∼Unif(2[T ])

 ∑
t∈Tk+1

(xt − p⋆
t ) · 1 [p⋆

t ∈ [0, α⋆] ∧ t ∈ S]


= 1

2 E
(x,p⋆)∼P

 3T/5∑
t=T/5+1

(xt − c/2)

 = 0

Combining the epochs, we obtain a subsampled step calibration error of at least

errstepCEsub(P,Atruthful) = E
(x,p⋆)∼P

[
stepCEsub(x, p⋆)

]
≥ Ω(

√
Tk) = Ω

(√
T log(1/c)

)
.

We can easily verify that the same analysis goes through without subsampling, i.e., we also have
errstepCE(P,Atruthful) = Ω(

√
T log(1/c)).

Non-truthful forecaster. We now turn to upper bounding the step calibration error of a dishonest
forecaster. Suppose that the dishonest forecaster, denoted by A, predicts pt = 1

2 for the first T/5
timesteps and computes ∆ = ∑T/5

t=1 xt − T
10 , which denotes the deviation of realized outcomes from

our prediction. Note that |∆| ≤ T/10. If ∆ < 0, pt = 1
2 was an overestimate. The forecaster A

then predicts pt = c
2 for timesteps t ∈ [T/5 + 1, 3T/5]. For t ∈ [3T/5 + 1, T ], A predicts 1

2 until the
bias at 1

2 becomes non-negative. Formally, let T ′ := max
{

t ∈ [T ] | ∆ +∑t−1
τ=3T/5+1(xτ−1 − 1

2) < 0
}

.
Forecaster A predicts pt = 1

2 for t ∈ [3T/5 + 1, T ′] and pt = 1− c
2 for t ∈ [T ′ + 1, T ]. That is, we

intentionally underestimate the true p⋆
t = 1 − c

2 by guessing pt = 1
2 to cancel out the bias from

the first k epochs. Note that this implies ∆ +∑T
t=3T/5+1(xt−1 − 1

2) ≤ 1
2 . Let us condition on the

event E that T ′ ≤ 9T/10 (and ∆ < 0), which occurs with probability at least 1− exp(−Ω(T )) by
Hoefdding’s inequality as the complementary event would require that at least T/10 of the timesteps
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t ∈ [3T/5 + 1, 9T/10] result in xt = 0. Then,

E
(x,p)∼(P,A)

[stepCE(x, p) | ∆ < 0]

= E
(x,p)∼(P,A)

[
sup

α∈[0,1]

∣∣∣∣∣
T∑

t=1
(xt − pt) · 1 [pt ∈ [0, α]]

∣∣∣∣∣ | ∆ < 0
]

≤ E
(x,p)∼(P,A)

[∣∣∣∣∣
T∑

t=1
(xt − pt) · 1

[
pt = 1

2

]∣∣∣∣∣ | E
]

+ E
(x,p)∼(P,A)

[∣∣∣∣∣
T∑

t=1
(xt − pt) · 1

[
pt = c

2
]∣∣∣∣∣ | E

]

+ E
(x,p)∼(P,A)

[∣∣∣∣∣
T∑

t=1
(xt − pt) · 1

[
pt = 1− c

2
]∣∣∣∣∣ | E

]
+ T · exp(−Ω(T ))

≤ 1
2 + E

X∼Binomial(2T/5,
c
2 )

[∣∣∣X − cT
5

∣∣∣]+ E
X∼Binomial(T −T ′,

c
2 )

[∣∣∣X − c(T −T ′)
2

∣∣∣]+ o(1)

≤ O(
√

cT + 1).

The case where ∆ ≥ 0 follows symmetrically. Defining T ′ := max{t ∈ [3T/5] | ∆+∑t−1
τ=T/5+1(xτ−1−

1
2) < 0}, we fix predictions of pt = 1− c

2 for timesteps t ∈ [3T/5 + 1, T ], pt = 1
2 for t ∈ [T/5 + 1, T ′],

and pt = c
2 for t ∈ [T ′ + 1, 3T/5]. The event E that T ′ ≤ 5T/10 (and ∆ > 0) occurs with probability

at least 1− exp(−Ω(T )) by Hoefdding’s inequality as the complementary event would require that
at least T/10 of the timesteps t ∈ [T/5 + 1, 5T/10] result in xt = 1. Then,

E
(x,p)∼(P,A)

[stepCE(x, p) | ∆ ≥ 0] ≤ O(
√

cT + 1).

Therefore, we have

OPTstepCE(P) ≤ E
(x,p)∼(P,A)

[stepCE(x, p)] ≤ O(
√

cT + 1).

Applying the inequality stepCEsub(x, p) ≤ 1
2stepCE(x, p) + O(

√
T ) from Lemma A.1 gives

OPTstepCEsub(P) ≤ O(
√

T ).

Since both errstepCE(P,Atruthful) and errstepCE(P,Atruthful) are lower bounded by Ω(
√

T log(1/c)),
there is an O(

√
cT + 1)-Ω(

√
T log(1/c)) truthfulness gap for the step calibration error and an

O(
√

T )-Ω(
√

T log(1/c)) truthfulness gap for the subsampled step calibration error.

We now turn to proving the tighter upper bound for the truthful forecaster’s error.

Theorem 5.6. For any T ≥ 2, smoothness parameter c ∈ (0, 1], and c-smoothed setting specified by
P, the expected subsampled step calibration error of truthfully predicting conditional probabilities
p⋆

1:T , errstepCEsub(P,Atruthful), is upper bounded by(
547

√
ln(1/c) + 1161

)
E
[√

VarT

]
+ (log2 T + 3)[16 log2(T ) log2(T/c) + 15] + 8

√
2 ln(1/c) + 17

√
2

≤ O

(√
log(1/c)

)
· E
[√

VarT

]
+ O

(
log2(T ) log(T/c)

)
.
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Combined with the lower bound OPTstepCEsub(P) ≥ Ω (EP [γ(VarT )]) from Lemma 5.3 and the
inequality

√
x ≤ γ(x) + 1, the theorem above shows that stepCEsub is (O(

√
log(1/c), polylog(T/c))-

truthful in c-smoothed settings.

Proof. For convenience, given α ∈ [0, 1] and y ∈ {0, 1}T , we define the martingale

Mt(α, y) :=
t∑

s=1
ys · 1 [p⋆

s ≤ α] · (xs − p⋆
s),

adapted to the filtration (Ft)t∈[T ] generated by sampling p⋆
t ∼ P(x1, x2, . . . , xt−1) and xt ∼

Bernoulli(p⋆
t ) for each t = 1, 2, . . . , T . We can verify that Mt(α, y) is a martingale by observ-

ing that, conditioned on any realization of x1:(s−1) = x′
1:(s−1), we indeed have

E
p⋆

s ,xs

[
ys · 1 [p⋆

s ≤ α] · (xs − p⋆
s) | x1:(s−1) = x′

1:(s−1)

]
= ys · E

p⋆
s∼P

(
x′

1:(s−1)

)
[
1 [p⋆

s ≤ α] · E
xs∼Bernoulli(p⋆

s)
[xs − p⋆

s]
]

= 0.

We can thus equivalently write our main claim as:

E
(x,p⋆)∼P

y∼Unif({0,1}T )

[
sup

α∈[0,1]
|MT (α, y)|

]

≤
(

547
√

ln(1
c ) + 1161

)
E
[√

VarT

]
+ (log2 T + 3)[16 log2(T ) log2(T

c ) + 15] + 8
√

2 ln(1
c ) + 17

√
2.

Dividing into epochs. For any realization of x1:T ∼ P, we will divide the timesteps [T ] into
epochs in the same style as [HQYZ24]: Let the k-th epoch be the shortest period (following the
(k − 1)-th epoch) whose realized variance is roughly at least 2k−1. Formally, consider sequence
τ0, τ1, . . . ∈ Z ∪ {∞}, where each τk denotes the last step of the k-th epoch and is defined as τ0 = 0
and

τk := min{t ∈ [τk−1 + 1, T ] | Vart −Varτk−1 + (t− τk−1) · c ≥ 2k−1} ∪ {∞} .

We will also write Ik := {τk−1 + 1, τk−1 + 2, . . . , min{T, τk}} to denote the timesteps in epoch k.
We first recall the following useful facts about this epoch division from [HQYZ24]. The realized

variance in epoch k, Varτk
− Varτk−1 , is at most 2k−1 + 1/4 ≤ 2k. For the k-th epoch to be

complete (i.e., τk < ∞), a necessary condition is that VarT + cT ≥ 2k−1. In particular, since
VarT + cT ≤ T/4 + T < 2T , the (⌈log2 T ⌉ + 2)-th epoch is never complete, i.e., τ⌈log2 T ⌉+2 = ∞.
The random variable 1 [t ∈ Ik] for an epoch k is measurable by x1:(t−1). We also note that the
k-th epoch cannot last more than

⌈
2k−1/c

⌉
steps: If τk−1 +

⌈
2k−1/c

⌉
= t ≤ T , we would have

Vart −Varτk−1 + (t− τk−1) · c ≥
⌈
2k−1/c

⌉
· c ≥ 2k−1, which implies τk ≤ τk−1 +

⌈
2k−1/c

⌉
.

Next, we observe that E
[√

VarT

]
= Ω(

√
cT ) holds in every c-smoothed setting. Recall that each

p⋆
t is sampled from a distribution with density bounded by 1/c. Therefore, with probability at least

1− (1/c) · (c/4) = 3/4, we have p⋆
t ∈ [c/8, 1− c/8], which implies p⋆

t (1− p⋆
t ) ≥ (c/8) · (1− c/8) ≥ 7c

64 .
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Therefore, with probability at least 1/2, p⋆
t (1− p⋆

t ) ≥ 7c
64 holds for at least T/2 values of t ∈ [T ], and

it follows that

E
[√

VarT

]
≥ 1

2 ·
√

7c

64 ·
T

2 ≥
√

7cT

16
√

2
.

We also want to bound the exponentially weighted sum

⌈log2 T ⌉+2∑
k=2

√
2k Pr[τk−1 <∞].

To this end, let j ∈ Z be the random variable defined such that VarT + cT ∈ [2j , 2j+1). We observe
that

√
VarT + cT ≥

√
2j . Also recall that, for any k ≥ 2, τk−1 <∞ holds only if VarT + cT ≥ 2k−2,

which in turn holds only if k − 2 ≤ j. We can thus bound

⌈log2 T ⌉+2∑
k=2

√
2k Pr[τk−1 <∞] ≤ E

⌈log2 T ⌉+2∑
k=2

√
2k · 1

[
VarT + cT ≥ 2k−2

]
≤ E

j+2∑
k=2

√
2k


≤ (4 + 2

√
2)E

[
2j/2

]
≤ (4 + 2

√
2)E

[√
VarT + cT

]
≤ 20(2 +

√
2)E

[√
VarT

]
.

(11)

The last step applies E
[√

VarT

]
≥

√
7cT

16
√

2 , which gives

E
[√

VarT + cT
]
≤ E

[√
VarT

]
+
√

cT ≤ E
[√

VarT

]
·
(

1 + 16
√

2√
7

)
≤ 10E

[√
VarT

]
.

Dividing step functions into rounded segments. Let Vε = {0, ε, 2ε, . . . , ⌊1/ε⌋ ε} denote the
multiples of ε in [0, 1]. Note that |Vε| = ⌊1/ε⌋+ 1 ≤ 2/ε elements. Let us fix an epoch k, condition
on the epoch being reached (i.e., τk−1 <∞) and define the following restriction of the martingale
Mt(α, y) to timesteps lying in epoch k:

Mt(α, y, k) :=
t∑

s=1
ys · 1 [p⋆

s ≤ α] · (xs − p⋆
s) · 1 [s ∈ Ik] .

Recall that we want to bound the supremum of this martingale over different values of the step
threshold α. Let us fix a step threshold α ∈ [0, 1] for now. Fixing some ε∗ > 0 and integer m ≥ 1
which we will specify later, we can define w0 = ⌊α/ε∗⌋ · ε∗ as a rounding down of α onto the grid Vε∗

of resolution ε∗. Then, for all i ∈ [m], we define recursively wi = wi−1 + 2−iε∗ if wi−1 + 2−iε∗ ≤ α
and wi = wi−1 otherwise. Equivalently, each wi is the rounding of α down to the nearest multiple
of 2−iε∗. Note that

{[0, w0]} ∪ {(wi−1, wi] : i ∈ [m]}
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forms a partition of [0, wm], so we have the decomposition

1 [x ≤ α] = 1 [x ∈ [0, w0]] +
m∑

i=1
1 [x ∈ (wi−1, wi]] + 1 [x ∈ (wm, α]] .

Thus,

|Mt(α, y, k)| =
∣∣∣∣∣

t∑
s=1

ys ·
(
1 [p⋆

s ≤ w0] +
m∑

i=1
1 [p⋆

s ∈ (wi−1, wi]] + 1 [p⋆
s ∈ (wm, α]]

)
· (xs − p⋆

s) · 1 [s ∈ Ik]
∣∣∣∣∣

≤
∣∣∣∣∣

t∑
s=1

ys · 1 [p⋆
s ∈ (wm, α]] · (xs − p⋆

s) · 1 [s ∈ Ik]
∣∣∣∣∣

+
∣∣∣∣∣

t∑
s=1

ys · 1 [p⋆
s ≤ w0] · (xs − p⋆

s) · 1 [s ∈ Ik]
∣∣∣∣∣

+
m∑

i=1

∣∣∣∣∣
t∑

s=1
ys · 1 [p⋆

s ∈ (wi−1, wi]] · (xs − p⋆
s) · 1 [s ∈ Ik]

∣∣∣∣∣ .
We can simplify this expression by noting that the first term above is upper bounded by

t∑
s=1

1
[
p⋆

s ∈ (wm, wm + 2−m · ε∗]
]
,

since α < wm + 2−m · ε∗ while ys ∈ {0, 1} and |xs − p⋆
s| ≤ 1 hold for every s. Let us also, with some

abuse of notation, define for every interval S ⊂ [0, 1]:

Mt(S, y, k) :=
t∑

s=1
yt · 1 [p⋆

s ∈ S] · (xs − p⋆
s) · 1 [s ∈ Ik] .

Finally, we recall that wi ∈ V2−i·ε∗ for every i ∈ {0, 1, . . . , m}. Putting these together, we can
simplify our upper bound on |MT (α, y, k)| to:

sup
α∈[0,1]

|MT (α, y, k)| ≤ max
w0∈Vε∗

|MT (w0, y, k)|+
m∑

i=1
max

wi∈V2−i·ε∗

∣∣∣MT ((wi, wi + 2−i · ε∗], y, k)
∣∣∣

+ max
wm∈V2−m·ε∗

T∑
t=1

1
[
p⋆

t ∈ (wm, wm + 2−m · ε∗]
]
.

(12)

Bounding each summand. We first note the following lemmas, which we will prove in the
sequel.

Lemma 5.7. For any epoch k,

E
[

max
w0∈Vε∗

|MT (w0, y, k)| |τk−1 <∞
]
≤
√

2k+1 ln(4/ε∗) +
√

2k−1π + 2 ln(4/ε∗) + 2.
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Lemma 5.8. For any epoch k and level i ∈ [m],

E
[

max
wi∈V2−i·ε∗

∣∣∣MT ((wi, wi + 2−i · ε∗], y, k)
∣∣∣ |τk−1 <∞

]

≤
√

(ε∗ · 2k−i+1/c2) ln(2i+2/ε∗) +
√

π · ε∗ · 2k−i−1/c2 + 2 ln
(
2i+2/ε∗

)
+ 2.

Lemma 5.9. For any epoch k,

E
[

max
wm∈V2−m·ε∗

T∑
t=1

1
[
p⋆

t ∈ (wm, wm + 2−m · ε∗]
]]
≤ 2T · ε∗

2mc
+ 3(ln(2m+1/ε∗) + 1).

We now set the parameters ε∗ and m as

ε∗ := c2, m := ⌊log2 T ⌋ ,

and substitute them into the above lemmas for the following simplified bound for each epoch k.

Lemma 5.10. The subsampled step calibration error in epoch k is upper bounded by

E
[

sup
α∈[0,1]

Mt(α, y, k) |τk−1 <∞
]
≤ 8

√
2k ln(1/c) + 17

√
2k + 16 log2(T ) log2(T/c) + 15.

Summing Lemma 5.10 over all epochs, we have

E
[

sup
α∈[0,1]

Mt(α, y)
]

≤
⌈log2 T ⌉+2∑

k=1
Pr[τk−1 <∞]E

[
sup

α∈[0,1]
Mt(α, y, k) |τk−1 <∞

]

≤
⌈log2 T ⌉+2∑

k=1
Pr[τk−1 <∞]

[
8
√

2k ln(1/c) + 17
√

2k + 16 log2(T ) log2(T/c) + 15
]

≤
⌈log2 T ⌉+2∑

k=1
Pr[τk−1 <∞]

[√
2k

(
8
√

ln(1/c) + 17
)

+ 16 log2(T ) log2(T/c) + 15
]
.

Applying Equation (11) gives the upper bound

E
[

sup
α∈[0,1]

Mt(α, y)
]

≤
(

8
√

ln(1/c) + 17
)
·

√2 +
⌈log2 T ⌉+2∑

k=2
Pr[τk−1 <∞] ·

√
2k

+ (⌈log2 T ⌉+ 2) · [16 log2(T ) log2(T/c) + 15]

≤
(

547
√

ln(1/c) + 1161
)
E
[√

VarT

]
+ (log2 T + 3)[16 log2(T ) log2(T/c) + 15] + 8

√
2 ln(1/c) + 17

√
2.
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Remaining proofs. We now prove Lemma 5.7, Lemma 5.8, Lemma 5.9, and Lemma 5.10.

Lemma 5.7. For any epoch k,

E
[

max
w0∈Vε∗

|MT (w0, y, k)| |τk−1 <∞
]
≤
√

2k+1 ln(4/ε∗) +
√

2k−1π + 2 ln(4/ε∗) + 2.

Proof. We first note that the realized variance of Mt(w0, y, k), for any particular choice of w0 ∈ Vε∗ ,
is bounded by the realized variance within the k-th epoch, which is in turn upper bounded by
2k. Thus, for any fixed choice of w0 and any p ∈ (0, 1), Freedman’s inequality gives that, with
probability at least 1− p,

|MT (w0, y, k)| ≤
√

2 · 2k · ln(2/p) + 2 ln(2/p).

Applying a union bound over the |Vε∗ | ≤ 2/ε∗ choices of w0 ∈ Vε∗ , we have with probability 1− p:

max
w0∈Vε∗

|MT (w0, y, k)| ≤
√

2k+1 ln((4/ε∗)/p) + 2 ln((4/ε∗)/p).

We can then use the standard inequality
√

a + b ≤
√

a +
√

b (for a, b ≥ 0) to relax the above into

max
w0∈Vε∗

|MT (w0, y, k)| ≤
√

2k+1 ln(4/ε∗) +
√

2k+1 ln(1/p) + 2 ln(4/ε∗) + 2 ln(1/p).

Taking the layer-cake representation, we have

E
[

max
w0∈Vε∗

|Mt(w0, y, k)| |τk−1 <∞
]

≤
∫ 1

0

[√
2k+1 ln(4/ε∗) +

√
2k+1 ln(1/p) + 2 ln(4/ε∗) + 2 ln(1/p)

]
dp

=
√

2k+1 ln(4/ε∗) + 2 ln(4/ε∗) +
√

2k+1
∫ 1

0

√
ln(1/p) dp + 2

∫ 1

0
ln(1/p) dp

=
√

2k+1 ln(4/ε∗) + 2 ln(4/ε∗) +
√

2k−1π + 2,

where the last equality uses the identities
∫ 1

0
√

ln(1/x) dx =
√

π
2 and

∫ 1
0 ln(1/x) dx = 1.

Lemma 5.8. For any epoch k and level i ∈ [m],

E
[

max
wi∈V2−i·ε∗

∣∣∣MT ((wi, wi + 2−i · ε∗], y, k)
∣∣∣ |τk−1 <∞

]

≤
√

(ε∗ · 2k−i+1/c2) ln(2i+2/ε∗) +
√

π · ε∗ · 2k−i−1/c2 + 2 ln
(
2i+2/ε∗

)
+ 2.

Proof. Let us fix a wi ∈ V2−i·ε∗ . We will now study segments of length 2−i · ε∗. We first bound the
realized variance of the martingale Mt((wi, wi + 2−i · ε∗], y, k).

Fact 5.11. Let vt := Mt((wi, wi + 2−i · ε∗], y, k)−Mt−1((wi, wi + 2−i · ε∗], y, k) denote the t-th term
of the martingale. We have that

T∑
s=1

E
[
|vs|2

∣∣∣x1:(s−1)
]
≤ ε∗2k−i/c2.
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Proof. Because the prior P is smooth, the probability that the conditional probability lies in any
short interval is small. More specifically,

Pr
[
p⋆

s ∈ (wi, wi + 2−i · ε∗] | x1:(s−1)
]
≤ 2−iε∗/c

holds for any x1:(s−1) ∈ {0, 1}s−1. Also, let t′ denote the first timestep of the k-th epoch and observe
that the event 1 [t′ = t] is measurable with x1:t−1. Further recalling that the maximum length of
each epoch is

⌈
2k−1/c

⌉
, we then have

T∑
s=1

E
x∼P

[
|vs|2 | x1:(s−1)

]

=
T∑

s=1
E

(x,p⋆)∼P

[
ys · 1

[
p⋆

s ∈ (wi, wi + 2−i · ε∗]
]
· (xs − p⋆

s)2 · 1 [s ∈ Ik] | x1:(s−1)
]

≤
T∑

s=1
E

(x,p⋆)∼P

[
1

[
p⋆

s ∈ (wi, wi + 2−i · ε∗]
]
· 1 [s ∈ Ik] | x1:(s−1)

]

≤
T∑

s=1
E

x1:(s−1)

1 [t′ = s
] ⌈2k−1/c⌉−1∑

τ=0
E

(x,p⋆)∼P

[
1

[
p⋆

s+τ ∈ (wi, wi + 2−i · ε∗]
]
| x1:(s−1)

]
≤

T∑
s=1

E
x1:(s−1)

1 [t′ = s
] ⌈2k−1/c⌉−1∑

τ=0
2−iε∗/c


≤
⌈
2k−1/c

⌉
· 2−iε∗/c

≤ 2k/c · 2−iε∗/c = ε∗2k−i/c2.

Freedman’s inequality gives for p ∈ (0, 1), with probability at least 1− p,∣∣∣Mt((wi, wi + 2−i · ε∗], y, k)
∣∣∣ ≤ √2(ε∗ · 2k−i/c2) ln(2/p) + 2 ln(2/p).

Taking a union bound on V2−i·ε∗ , with probability at least 1− p,

max
wi∈V2−i·ε∗

∣∣∣Mt((wi, wi + 2−i · ε∗], y, k)
∣∣∣

≤
√

(ε∗ · 2k−i+1/c2) ln (4 · (2i/ε∗)/p) + 2 ln
(
4 · (2i/ε∗)/p

)
.

We then take the layer cake representation as before

E
[

max
wi∈V2−i·ε∗

∣∣∣Mt((wi, wi + 2−i · ε∗], y, k)
∣∣∣ |τk−1 <∞

]

≤
∫ 1

0

√
(ε∗ · 2k−i+1/c2) ln(2i+2/ε∗) +

√
(ε∗ · 2k−i+1/c2) ln(1/p) + 2 ln

(
4 · (2i/ε∗)/p

)
dp

≤
√

(ε∗ · 2k−i+1/c2) ln(2i+2/ε∗) + 2 ln
(
2i+2/ε∗

)
+
∫ 1

0

√
(ε∗ · 2k−i+1/c2) ln(1/p) + 2 ln(1/p) dp

=
√

(ε∗ · 2k−i+1/c2) ln(2i+2/ε∗) + 2 ln
(
2i+2/ε∗

)
+
√

π · ε∗ · 2k−i−1/c2 + 2.
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Lemma 5.9. For any epoch k,

E
[

max
wm∈V2−m·ε∗

T∑
t=1

1
[
p⋆

t ∈ (wm, wm + 2−m · ε∗]
]]
≤ 2T · ε∗

2mc
+ 3(ln(2m+1/ε∗) + 1).

Proof. Let X := maxwm∈V2−m·ε∗

∑T
t=1 1 [p⋆

t ∈ (wm, wm + 2−m · ε∗]] denote the random variable of
interest. Since P is c-smoothed, for each fixed wm ∈ V2−mε∗ and every t ∈ [T ], it holds that

Pr
[
p⋆

t ∈ (wm, wm + 2−mε∗] | x1:(t−1)] ≤ 2−mε∗/c.

Therefore,
T∑

t=1
1
[
p⋆

t ∈ (wm, wm + 2−mε∗]
]

is stochastically dominated by a binomial random variable that follows Binomial(T, 2−mε∗/c). By
the multiplicative Chernoff bound, we have

Pr
[

T∑
t=1

1
[
p⋆

t ∈ (wm, wm + 2−mε∗]
]
≥ (1 + δ)µ

]
≤ exp

(
− δ2

2 + δ
µ

)
≤ exp

(
−δµ

3

)
,

where δ ≥ 1 and µ = T · 2−mε∗

c .
By the union bound, for every δ ≥ 1, we have

Pr [X ≥ (1 + δ)µ] ≤ |V2−m·ε∗ | · exp
(
−δµ

3

)
≤ ⌈2m/ε∗⌉ · exp

(
−δµ

3

)
. (13)

Therefore, we have

E [X] =
∫ +∞

0
Pr [X ≥ τ ] dτ

≤ 2µ +
∫ +∞

2µ
Pr [X ≥ τ ] dτ

≤ 2µ + µ

∫ +∞

1
Pr [X ≥ (1 + τ)µ] dτ.

Plugging Equation (13) into the integral above gives∫ +∞

1
Pr [X ≥ (1 + τ)µ] dτ ≤

∫ +∞

0
min{⌈2m/ε∗⌉ · e−µτ/3, 1} dτ = ln⌈2m/ε∗⌉+ 1

µ/3 ,

where the second step applies the identity∫ +∞

0
min{ne−ax, 1} dx =

∫ (ln n)/a

0
1 dx +

∫ +∞

(ln n)/a
ne−ax dx = ln n

a
+ n

a
· e−(a ln n)/a = ln n + 1

a
.

Therefore, we conclude that

E [X] ≤ 2µ + 3(ln⌈2m/ε∗⌉+ 1) = 2T · ε∗

2mc
+ 3(ln⌈2m/ε∗⌉+ 1) ≤ 2T · ε∗

2mc
+ 3(ln(2m+1/ε∗) + 1).
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Lemma 5.10. The subsampled step calibration error in epoch k is upper bounded by

E
[

sup
α∈[0,1]

Mt(α, y, k) |τk−1 <∞
]
≤ 8

√
2k ln(1/c) + 17

√
2k + 16 log2(T ) log2(T/c) + 15.

Proof. By our choice of ε∗ = c2 and m = ⌊log2 T ⌋, we have 1/ε∗ ≤ 1/c2, 2m ≤ T < 2m+1. Filling
these into Lemma 5.7, we have

E
[

max
w0∈Vε∗

|Mt(w0, y, k)| |τk−1 <∞
]

≤
√

2k+1 ln(4/c2) +
√

2k−1π + 2 ln(4/c2) + 2

≤ 2
√

2k ln(1/c) +
√

2 ln 4 ·
√

2k +
√

π/2 ·
√

2k + 4 ln(1/c) + (2 ln 4 + 2)

≤ 2
√

2k ln(1/c) + 3
√

2k + 4 ln(1/c) + 5.

(14)

The bound in Lemma 5.9 reduces to

E
[

max
wm∈V2−m·ε∗

T∑
t=1

1
[
p⋆

t ∈ (wm, wm + 2−m · ε∗]
]]
≤ 2T · c2

2mc
+ 3

(
ln(2m+1/c2) + 1

)
≤ 4c + 3 ln(2T/c2) + 3
≤ 10 + 6 ln(T/c).

(15)

Similarly, plugging these constants into Lemma 5.8 and summing over i ∈ [m] gives
m∑

i=1
E
[

max
wi∈V2−i·ε∗

∣∣∣Mt((wi, wi + 2−i · ε∗], y, k)
∣∣∣ |τk−1 <∞

]

≤
m∑

i=1

(√
2k−i+1 ln(2i+2/c2) +

√
2k−i−1π + 2 ln(2i+2/c2) + 2

)
.

(16)

To further simplify the right-hand side of Equation (16), we note that
m∑

i=1

√
2k−i+1 ln(2i+2/c2) =

m∑
i=1

√
2k ln(4/c2) · 21−i + 2k · 21−i ln 2i

≤
√

2k ln(4/c2) ·
+∞∑
i=1

√
21−i +

√
2k ·

+∞∑
i=1

√
21−i ln 2i

≤ (2 +
√

2)
√

2k ln(4/c2) + 5
√

2k,

where the last inequality uses the geometric series ∑∞
n=1
√

21−n = 2 +
√

2 and ∑∞
n=1
√

21−n ln 2n ≈
4.88 < 5. We can similarly bound

m∑
i=1

√
2k−i−1π ≤ (1 + 1/

√
2)
√

π2k

and
m∑

i=1
2 ln(2i+2/c2) = 2m ln(4/c2) + m(m + 1) ln 2
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using the arithmetic series ∑m
n=1 n = m(m+1)

2 . Putting these together, we have the following
simplified expression for Equation (16):

m∑
i=1

E
[

max
wi∈V2−i·ε∗

∣∣∣Mt((wi, wi + 2−i · ε∗], y, k)
∣∣∣ |τk−1 <∞

]

≤ (2 +
√

2)
√

2k ln(4/c2) + (5 + (1 + 1/
√

2)
√

π) ·
√

2k + 2m ln(4/c2) + m(m + 1) ln 2 + 2m

≤ 4
√

2k ln(4/c2) + 9
√

2k + 2m ln(4/c2) + 4m2.

(17)

We can then sum Equation (14), Equation (15) and Equation (17) to obtain the following
simplification of Equation (12):

E
[

sup
α∈[0,1]

|Mt(α, y, k)| |τk−1 <∞
]

≤ E
[

max
w0∈Vε∗

|Mt(w0, y, k)| |τk−1 <∞
]

+
m∑

i=1
E
[

max
wi∈V2−i·ε∗

∣∣∣Mt((wi, wi + 2−i · ε∗], y, k)
∣∣∣ |τk−1 <∞

]

+ E
[

max
wm∈V2−m·ε∗

T∑
t=1

1
[
p⋆

t ∈ (wm, wm + 2−m · ε∗]
]]

≤
(

2
√

2k ln(1/c) + 3
√

2k + 4 ln(1/c) + 5
)

+
(

4
√

2k ln(4/c2) + 9
√

2k + 2m ln(4/c2) + 4m2
)

+ (10 + 6 ln(T/c))

≤ 8
√

2k ln(1/c) + 17
√

2k + 8m2 + 4m ln(1/c) + 6 ln(T/c) + 4 ln(1/c) + 15.

The last step above applies√
2k ln(4/c2) =

√
2k ln 4 + 2 · 2k ln(1/c) ≤

√
2 ·
√

2k ln(1/c) +
√

ln 4 ·
√

2k

and
2m ln(4/c2) = 4m ln 2 + 4m ln(1/c) ≤ 4m2 + 4m ln(1/c).

Finally, the lemma follows from

8m2 + 6 ln(T/c) ≤ 8(log2 T )2 + 6 log2(T ) log2(1/c) ≤ 8 log2(T ) log2(T/c)

and
4m ln(1/c) + 4 ln(1/c) ≤ 8m ln(1/c) ≤ 8 log2(T ) log2(T/c).

5.4 (O(1), 0)-Truthfulness on Product Distributions

For product distributions, the subsampled step calibration error, stepCEsub, enjoys a stronger
(O(1), 0)-truthfulness guarantee, even in the non-smoothed setting. Recall from Proposition 4.5 that
the subsampled U-Calibration error, in contrast, can have an e−Ω(T )-O(

√
T ) truthfulness gap on

product distributions.
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Proposition 5.12. On every product distribution D over {0, 1}T , it holds that
errstepCEsub(D,Atruthful(D)) ≤ O(OPTstepCEsub(D)),

where the O(·) notation hides a universal constant that does not depend on D.
Proof. Suppose that D = ∏T

t=1 Bernoulli(p⋆
t ) for some p⋆ ∈ [0, 1]T . By Lemma 5.3, we have

OPTstepCEsub(D) = Ω(γ(VarT )),

where VarT := ∑T
t=1 p⋆

t (1− p⋆
t ) and γ(x) := x · 1 [x ≤ 1] +

√
x · 1 [x > 1].

It remains to show that the truthful forecaster Atruthful(D), which predicts pt = p⋆
t at every step

t, satisfies
errstepCEsub(D,Atruthful(D)) = E

x∼D

[
stepCEsub(x, p⋆)

]
= O(γ(VarT )).

We consider the following two cases, depending on whether VarT is below or above 1.

Case 1: VarT ≤ 1. We note that, for every y ∈ {0, 1}T and α ∈ [0, 1],∣∣∣∣∣
T∑

t=1
yt · (xt − pt) · 1 [pt ∈ [0, α]]

∣∣∣∣∣ ≤
T∑

t=1
|xt − pt|.

It follows that stepCEsub(x, p) ≤∑T
t=1 |xt − pt|, and

E
x∼D

[
stepCEsub(x, p⋆)

]
≤

T∑
t=1

E
xt∼Bernoulli(p⋆

t )
[|xt − p⋆

t |] =
T∑

t=1
2p⋆

t (1− p⋆
t ) = 2γ(VarT ).

Case 2: VarT > 1. Without loss of generality, we assume that p⋆
1 ≤ p⋆

2 ≤ · · · ≤ p⋆
T , as the behavior

of the truthful forecaster and the resulting stepCEsub are invariant up to the reordering of timesteps.
For fixed x, y ∈ {0, 1}T , we have

sup
α∈[0,1]

∣∣∣∣∣
T∑

t=1
yt · (xt − p⋆

t ) · 1 [p⋆
t ∈ [0, α]]

∣∣∣∣∣ ≤ max
t∈[T ]

∣∣∣∣∣
t∑

i=1
yi · (xi − p⋆

i )
∣∣∣∣∣ .

Taking an expectation over x ∼ D and y ∼ Unif({0, 1}T ) shows that

E
x∼D

[
stepCEsub(x, p⋆

t )
]
≤ E

x∼D,y∼Unif({0,1}T )

[
max
t∈[T ]

∣∣∣∣∣
t∑

i=1
yi · (xi − p⋆

i )
∣∣∣∣∣
]

.

Over the randomness in (x, y), consider the random walk (Xt)T
t=0 defined as Xt := ∑t

i=1 yi(xi − p⋆
i ).

Then, (Xt)T
t=0 forms a martingale in which the increment at time t has a variance of p⋆

t (1− p⋆
t )/2.

The total variance is then E
[
X2

T

]
= ∑T

t=1 p⋆
t (1−p⋆

t )/2 = VarT /2. Then, by Kolmogorov’s inequality,

Pr
[
max
t∈[T ]

|Xt| ≥ τ

]
≤ E

[
X2

T

]
τ2 = VarT

2τ2

holds for every τ > 0. It follows that

E
[
max
t∈[T ]

|Xt|
]

=
∫ +∞

0
Pr
[
max
t∈[T ]

|Xt| ≥ τ

]
dτ

≤
∫ +∞

0
min

{VarT

2τ2 , 1
}

dτ = O(
√

VarT ) = O(γ(VarT )).
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5.5 An O(
√

T ) Step Calibration Error Algorithm

Theorem 5.13. Algorithm 1 guarantees an expected step calibration error of O(
√

T log T ), even
when the T events are adversarially and adaptively chosen. Moreover, the forecasts made by the
algorithm each randomize over at most two probabilities.

By the inequality stepCEsub(x, p) ≤ 1
2stepCE(x, p) + O(

√
T ) (Lemma A.1), the same algorithm

guarantees an O(
√

T log T ) expected error with respect to the subsampled version stepCEsub as well.

Algorithm 1 Prediction Algorithm with Hedge
Require: Number of buckets k ≥ 2, time horizon T

1: Initialize weight w1 to be uniform over {±1} × [k]
2: for t = 1 to T do
3: if E(σ,i)∼wt

[
σ · 1

[
j−1
k−1 ≤

i−1
k−1

]]
≥ 0 for all j ∈ [k] then

4: Predict pt = 1
5: else if E(σ,i)∼wt

[
σ · 1

[
j−1
k−1 ≤

i−1
k−1

]]
≤ 0 for all j ∈ [k] then

6: Predict pt = 0
7: else
8: Find j ∈ [k − 1] such that

E
(σ,i)∼wt

[
σ · 1

[
j−1
k−1 ≤

i−1
k−1

]]
· E

(σ,i)∼wt

[
σ · 1

[
j

k−1 ≤
i−1
k−1

]]
≤ 0

9: Find q ∈ [0, 1] such that

q · E
(σ,i)∼wt

[
σ · 1

[
j−1
k−1 ≤

i−1
k−1

]]
+ (1− q) · E

(σ,i)∼wt

[
σ · 1

[
j

k−1 ≤
i−1
k−1

]]
= 0

10: Predict pt = j−1
k−1 with probability q and pt = j

k−1 with probability 1− q

11: Observe xt ∈ {0, 1} from Nature
12: Compute wt+1 by applying the Hedge algorithm to the cost functions (cxτ ,pτ )τ∈[t], where

cxτ ,pτ (σ, i) = 1− 1
2σ · 1

[
pτ ≤ i−1

k−1

]
· (xτ − pτ ).

Proof. Given sign σ ∈ {±1} and bucket i ∈ [k], we define ℓσ,i : {0, 1} × [0, 1]→ [−1, 1] to map from
a realization x ∈ {0, 1} and prediction p ∈ [0, 1] to a loss

ℓσ,i(x, p) = σ · 1
[
p ≤ i−1

k−1

]
· (x− p).

Then, on events x1:T ∈ {0, 1}T and predictions p1:T ∈
{

i−1
k−1 : i ∈ [k]

}T
, the step calibration error

can be written as

stepCE(x1:T , p1:T ) = max
σ∗∈{±1},i∗∈[k]

T∑
t=1

ℓσ∗,i∗(xt, pt).

Furthermore, the cost function cx,p : {±1}× [k] 7→ [0, 1] used by the Hedge algorithm in Algorithm 1
is simply

cx,p(σ, i) = 1− 1
2 · ℓσ,i(x, p).
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Guarantees of Hedge. Consider the sequence of distributions w1:T ∈ ∆({±1} × [k]) given by
applying Hedge to the cost functions (cxt,pt)t∈[T ]:

wt = Hedge(cx1,p1 , cx2,p2 , . . . , cxt−1,pt−1).

Hedge guarantees that, even though (xt, pt) is allowed to depend on w1:t at each step t ∈ [T ], we
still have

min
σ∗∈{±1},i∗∈[k]

T∑
t=1

cxt,pt(σ∗, i∗) ≥
T∑

t=1
E

(σ,i)∼wt

[cxt,pt(σ, i)]−O
(√

T log k
)

.

Equivalently,

max
σ∗∈{±1},i∗∈[k]

T∑
t=1

ℓσ∗,i∗(xt, pt) ≤
T∑

t=1
E

(σ,i)∼wt

[ℓσ,i(xt, pt)] + O
(√

T log k
)

.

Therefore, to upper bound stepCE(x, p), it remains to control the loss E(σ,i)∼wt
[ℓσ,i(xt, pt)] at each

step.

Control the per-step loss. Fix a timestep t ∈ [T ]. We condition on the realization of x1:(t−1)
and p1:(t−1), and shorthand w for wt ∈ ∆({±1} × [k]). For a fixed prediction distribution p ∈
∆({ i−1

k−1 : i ∈ [k]}), we can write

max
x∈{0,1}

E
p∼p

[
E

(σ,i)∼w
[ℓσ,i(x, p)]

]
= max

x∈{0,1}
E

(σ,i)∼w

[
σ · E

p∼p

[
1

[
p ≤ i−1

k−1

]
· (x− p)

]]
= max

x∈{0,1}
E

p∼p
[x · Cp]− E

p∼p
[p · Cp]

= max
{

E
p∼p

[Cp] , 0
}
− E

p∼p
[p · Cp] ,

where Cp := E(σ,i)∼w

[
σ · 1

[
p ≤ i−1

k−1

]]
.

Suppose that Cp ≥ 0 holds for all p ∈
{

i−1
k−1 : i ∈ [k]

}
. Then, we can let p be the degenerate

distribution at 1 and get

max
x∈{0,1}

E
p∼p

[
E

(σ,i)∼w
[ℓσ,i(x, p)]

]
= max{C1, 0} − 1 · C1 = 0.

Similarly, if Cp ≤ 0 holds for every p ∈
{

i−1
k−1 : i ∈ [k]

}
, we can set p to be deterministically 0 and

get

max
x∈{0,1}

E
p∼p

[
E

(σ,i)∼w
[ℓσ,i(x, p)]

]
= max {C0, 0} − 0 · C0 = 0.

If neither holds, there must exist p1, p2 ∈
{

i−1
k−1 : i ∈ [k]

}
such that p2−p1 = 1

k−1 and Cp1 ·Cp2 ≤ 0.
Then, there also exists q ∈ [0, 1] such that

q · Cp1 + (1− q) · Cp2 = 0.
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We accordingly let p take value p1 with probability q and take value p2 with probability 1− q. This
choice ensures Ep∼p [Cp] = q · Cp1 + (1− q) · Cp2 = 0, which further implies

max
x∈{0,1}

E
p∼p

[
E

(σ,i)∼w
[ℓσ,i(x, p)]

]
= max

{
E

p∼p
[Cp] , 0

}
− E

p∼p
[p · Cp]

= 0− q · (p1Cp1)− (1− q) · (p2Cp2)
= −p1(qCp1 + (1− q)Cp2)− (p2 − p1)(1− q)Cp2

= −p1 · E
p∼p

[Cp]− (p2 − p1)(1− q)Cp2

≤ 1
k − 1 ,

with the last inequality following from Ep∼p [Cp] = 0, p2 − p1 = 1
k−1 and |Cp2 | ≤ 1.

Note that our construction of p coincides with the random choice of pt at each timestep t in
Algorithm 1. Therefore, it holds for every t ∈ [T ] that

E
(σ,i)∼wt

[ℓσ,i(xt, pt)] = E
wt

[
E

(σ,i)∼wt

[ℓσ,i(xt, pt) | wt]
]
≤ E

wt

 max
x′∈{0,1}

E
(σ,i)∼wt

pt∼pt

[
ℓσ,i(x′, pt)

] ≤ 1
k − 1 .

We conclude that

E [stepCE(x, p)] = E
[

max
σ∗∈{±1},i∗∈[k]

T∑
t=1

ℓσ∗,i∗(xt, pt)
]

≤
T∑

t=1
E

(σ,i)∼wt

[ℓσ,i(xt, pt)] + O(
√

T log k)

≤ T

k − 1 + O(
√

T log k).

Choosing k = T gives the O(
√

T log T ) bound.
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A Basic Facts
In this section, we prove the equivalent formulation of the V-calibration error [KPLST23] (Proposi-
tion 2.3), establish the decision-theoretic interpretation of step calibration (Fact 5.1), and show
that stepCEsub is close to stepCE in general (Lemma A.1).

A.1 Proof of Proposition 2.3

Proposition 2.3. The V-Calibration error takes the alternative form

VCal(x, p) = 2 · sup
α∈[0,1]

max{X(α)
− − αN

(α)
− , αN

(α)
+ −X

(α)
+ },

where N
(α)
− := ∑T

t=1 1 [pt < α], N
(α)
+ := ∑T

t=1 1 [pt > α], X
(α)
− := ∑T

t=1 xt · 1 [pt < α], and X
(α)
+ :=∑T

t=1 xt · 1 [pt > α].
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Proof. Recall that Sα(x, p) := (α− x) · sgn(p− α) and that the V-Calibration error is given by

VCal(x, p) = sup
α,β∈[0,1]

[
T∑

t=1
Sα(xt, pt)−

T∑
t=1

Sα(xt, β)
]

= sup
α∈[0,1]

[
T∑

t=1
Sα(xt, pt)−

T∑
t=1

Sα(xt, µ)
]

= sup
α∈[0,1]

[
T∑

t=1
(xt − α) · sgn(α− pt)−

T∑
t=1

(xt − α) · sgn(α− µ)
]

,

where the optimal choice of β is always β = µ := 1
T

∑
xt, since Sα is proper.

For α ∈ [0, 1], we introduce the shorthands

f(α) :=
T∑

t=1
(xt − α) · sgn(α− pt)−

T∑
t=1

(xt − α) · sgn(α− µ)

and
g(α) := max

{
X

(α)
− − αN

(α)
− , αN

(α)
+ −X

(α)
+

}
.

Towards proving supα∈[0,1] f(α) = 2 supα∈[0,1] g(α), we will first show that, for S := {p1, p2, . . . , pT , µ},

sup
α∈[0,1]

f(α) = sup
α∈[0,1]\S

f(α) and sup
α∈[0,1]

g(α) = sup
α∈[0,1]\S

g(α).

In other words, ignoring the case that α coincides with a prediction pt or the overall average µ does
not change either supremum. Then, we will show that, for every α ∈ [0, 1] \ S, we indeed have
f(α) = 2g(α). The desired identity would then follow from

sup
α∈[0,1]

f(α) = sup
α∈[0,1]\S

f(α) = 2 sup
α∈[0,1]\S

g(α) = 2 sup
α∈[0,1]

g(α).

Ignore atypical values for f . First, we focus on the value of f(α0) for some α0 ∈ S =
{p1, p2, . . . , pT , µ}. We claim that

f(α0) = 1
2

[
lim

α→α−
0

f(α) + lim
α→α+

0

f(α)
]

, (18)

i.e., f(α0) is equal to the average of the left-sided and right-sided limits of f at α0. Assuming
Equation (18), if α0 ∈ (0, 1), when α approaches α0 from one of the two sides, the limit of f(α) is
at least f(α0). Then, excluding α0 does not decrease the supremum of f(α).

It remains to deal with the case that α0 ∈ {0, 1}. When α0 = 0, we still have Equation (18); the
issue is that the left-sided limit (as α→ 0−) does not contribute to the supremum supα∈[0,1] f(α).
The previous argument would still go through if we could further show that

lim
α→0−

f(α) ≤ lim
α→0+

f(α), (19)

since (18) and (19) together imply that limα→0+ f(α) ≥ f(0), so that we can safely ignore the
α0 = 0 case. A symmetric argument would deal with the α0 = 1 case via showing limα→1− f(α) ≥
limα→1+ f(α).
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To verify Equation (18), we consider the term (xt − α) · sgn(α− pt) in f(α). When α0 ̸= pt, the
term is continuous at α0, and contributes equally to both sides of (18). When α0 = pt, we have

lim
α→α−

0

(xt − α) · sgn(α− pt) = −(xt − α) and lim
α→α+

0

(xt − α) · sgn(α− pt) = xt − α.

The average of the two limits is exactly 0, which is equal to (xt − α0) · sgn(α0 − pt) since α0 = pt.
By the same token, each term −(xt − α) · sgn(α− µ) also contributes equally to both sides of (18).

To verify Equation (19), we again note that each term (xt − α) · sgn(α− pt) contributes to both
sides equally if pt ̸= 0. When pt = 0, we have

lim
α→0−

(xt − α) · sgn(α− pt) = −xt ≤ 0 and lim
α→0+

(xt − α) · sgn(α− pt) = xt ≥ 0.

For the term −(xt − α) · sgn(α− µ), again, it suffices to verify the case that µ = 0, where

lim
α→0−

[−(xt − α) · sgn(α− µ)] = xt = 0 and lim
α→0+

[−(xt − α) · sgn(α− µ)] = xt = 0.

In the above, we use the fact that µ = 0 implies that xt = 0 for every t ∈ [T ]. This proves
Equation (19) and allows us to ignore the α0 = 0 case (and, by symmetry, the α0 = 1 case).

Ignore atypical values for g. Again, we start with the easier case that α0 ∈ S ∩ (0, 1). In this
case, there exists δ > 0 such that: (1) α0 − δ, α0 + δ ∈ [0, 1]; (2) [α0 − δ, α0 + δ] \ {α0} contains no
elements in S = {p1, p2, . . . , pT , µ}. Concretely, we can choose

δ = min
({1

2 |α0 − β| : β ∈ S \ {α0}
}
∪ {α0, 1− α0}

)
> 0.

Then, recalling that g(α) = max
{

X
(α)
− − αN

(α)
− , αN

(α)
+ −X

(α)
+

}
, we have

X
(α0)
− − α0N

(α0)
− = X

(α0−δ)
− − (α0 − δ)N (α0−δ)

− ≤ g(α0 − δ).

The first step above holds since our choice of δ guarantees pt /∈ [α0 − δ, α0) for each t ∈ [T ], which
further implies pt < α0 ⇐⇒ pt < α0 − δ. By the same token, we have

α0N
(α0)
+ −X

(α0)
+ = (α0 + δ)N (α0+δ)

+ −X
(α0+δ)
+ ≤ g(α0 + δ).

Therefore, we have
g(α0) ≤ max{g(α0 − δ), g(α0 + δ)}

and α0 − δ, α0 + δ ∈ [0, 1] \ S. This shows that ignoring the case that α0 ∈ S ∩ (0, 1) does not affect
the supremum of g(α).

It remains to deal with the case that α0 ∈ {0, 1}. When α0 = 0, we have

g(0) = max
{

X
(0)
− − 0 ·N (0)

− , 0 ·N (0)
+ −X

(0)
+

}
= 0,

since X
(0)
− = 0 and X

(0)
+ ≥ 0. By symmetry, we also have g(1) = 0. Therefore, ignoring these two

values of g does not affect the supremum.
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Analysis for typical α. It remains to show that f(α) = 2g(α) holds for every α ∈ [0, 1] \S. Note
that, in this case, the factors sgn(α− pt) and sgn(α− µ) do not take value 0 in f(α). When α < µ,
f(α) is given by

f(α) =
∑

t∈[T ]:pt<α

(xt − α)−
∑

t∈[T ]:pt>α

(xt − α) +
T∑

t=1
(xt − α)

=
(
X

(α)
− − αN

(α)
−

)
−
(
X

(α)
+ − αN

(α)
+

)
+
(
X

(α)
− + X

(α)
+ − αT

)
= 2

(
X

(α)
− − αN

(α)
−

)
.

Furthermore, since α < µ, we have

αN
(α)
− + αN

(α)
+ = αT < µT = X

(α)
− + X

(α)
+ ,

which implies X
(α)
− − αN

(α)
− > αN

(α)
+ −X

(α)
+ . It follows that

f(α) = 2
(
X

(α)
− − αN

(α)
−

)
= 2 max

{
X

(α)
− − αN

(α)
− , αN

(α)
+ −X

(α)
+

}
= 2g(α).

Similarly, when α > µ, we have

f(α) =
(
X

(α)
− − αN

(α)
−

)
−
(
X

(α)
+ − αN

(α)
+

)
−
(
X

(α)
− + X

(α)
+ − αT

)
= 2

(
αN

(α)
+ −X

(α)
+

)
and

αN
(α)
+ −X

(α)
+ > X

(α)
− − αN

(α)
− ,

which also imply f(α) = 2g(α). This shows that f(α) = 2g(α) holds for every α ∈ [0, 1] \ S and
completes the proof.

A.2 Proof of Fact 5.1

Fact 5.1. For any x ∈ {0, 1}T and p ∈ [0, 1]T ,

1
3 sup

α∈[0,1]

∣∣∣∣∣
T∑

t=1
(xt − pt) · sgn(α− pt)

∣∣∣∣∣ ≤ stepCE(x, p) ≤ sup
α∈[0,1]

∣∣∣∣∣
T∑

t=1
(xt − pt) · sgn(α− pt)

∣∣∣∣∣ .
Proof. Fix x ∈ {0, 1}T and p ∈ [0, 1]T . Before proving the inequalities, we first show that∣∣∣∣∣

T∑
t=1

(xt − pt)
∣∣∣∣∣ ≤ sup

α∈[0,1]

∣∣∣∣∣
T∑

t=1
(xt − pt) · sgn(α− pt)

∣∣∣∣∣ , (20)

i.e., the total bias is upper bounded by the variant of V-Calibration error.

Upper bound the total bias. If ∑T
t=1(xt − pt) ≥ 0, we have

T∑
t=1

(xt − pt) · sgn(1− pt) =
T∑

t=1
(xt − pt)−

T∑
t=1

(xt − pt) · 1 [pt = 1] ≥
T∑

t=1
(xt − pt),
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where the last step holds since (xt − pt) · 1 [pt = 1] takes value 0 when pt ̸= 1, and takes value
xt − 1 ≤ 0 when pt = 1. It follows that∣∣∣∣∣

T∑
t=1

(xt − pt)
∣∣∣∣∣ =

T∑
t=1

(xt − pt) ≤
T∑

t=1
(xt − pt) · sgn(1− pt) ≤ sup

α∈[0,1]

∣∣∣∣∣
T∑

t=1
(xt − pt) · sgn(α− pt)

∣∣∣∣∣ .
Similarly, when ∑T

t=1(xt − pt) < 0, we have

T∑
t=1

(xt − pt) · sgn(0− pt) = −
T∑

t=1
(xt − pt) +

T∑
t=1

(xt − pt) · 1 [pt = 0] ≥ −
T∑

t=1
(xt − pt),

which implies∣∣∣∣∣
T∑

t=1
(xt − pt)

∣∣∣∣∣ = −
T∑

t=1
(xt − pt) ≤

T∑
t=1

(xt − pt) · sgn(0− pt) ≤ sup
α∈[0,1]

∣∣∣∣∣
T∑

t=1
(xt − pt) · sgn(α− pt)

∣∣∣∣∣ .
The upper bound part. Now we upper bound stepCE(x, p). It suffices to show that∣∣∣∣∣

T∑
t=1

(xt − pt) · 1 [pt ≤ α]
∣∣∣∣∣ ≤ sup

β∈[0,1]

∣∣∣∣∣
T∑

t=1
(xt − pt) · sgn(β − pt)

∣∣∣∣∣
holds for every α ∈ [0, 1].

When α = 1, the above is exactly given by Equation (20). When α < 1, we can always find α′ > α
such that {p1, p2, . . . , pT } ∩ (α, α′] = ∅. Then, for every t ∈ [T ], we have 1 [pt ≤ α] = 1 [pt ≤ α′].
Furthermore, since α′ /∈ {p1, p2, . . . , pT }, we have 1 [pt ≤ α′] = 1 [0 ≤ α′ − pt] = 1

2(1 + sgn(α′ − pt)).
It follows that∣∣∣∣∣

T∑
t=1

(xt − pt) · 1 [pt ≤ α]
∣∣∣∣∣ =

∣∣∣∣∣
T∑

t=1
(xt − pt) ·

1
2
(
1 + sgn(α′ − pt)

)∣∣∣∣∣
≤ 1

2

∣∣∣∣∣
T∑

t=1
(xt − pt)

∣∣∣∣∣+ 1
2

∣∣∣∣∣
T∑

t=1
(xt − pt) · sgn(α′ − pt)

∣∣∣∣∣
≤ sup

β∈[0,1]

∣∣∣∣∣
T∑

t=1
(xt − pt) · sgn(β − pt)

∣∣∣∣∣ . (Equation (20))

This proves the upper bound on stepCE(x, p).

The lower bound part. For the other direction, it suffices to prove that∣∣∣∣∣
T∑

t=1
(xt − pt) · sgn(α− pt)

∣∣∣∣∣ ≤ 3stepCE(x, p)

holds for every α ∈ [0, 1]. Note that

sgn(α− pt) = 1 [pt ≤ α]− 1 [pt ≥ α] = 1 [pt ≤ α]− 1 [pt ≤ 1] + 1 [pt < α] .
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If α = 0, the last indicator 1 [pt < α] is always zero, and we have∣∣∣∣∣
T∑

t=1
(xt − pt) · sgn(α− pt)

∣∣∣∣∣ ≤
∣∣∣∣∣

T∑
t=1

(xt − pt) · 1 [pt ≤ α]
∣∣∣∣∣+

∣∣∣∣∣
T∑

t=1
(xt − pt) · 1 [pt ≤ 1]

∣∣∣∣∣ ≤ 2stepCE(x, p).

When α > 0, we can always find α′ < α such that {p1, p2, . . . , pT } ∩ (α′, α) = ∅. Then, 1 [pt < α] =
1 [pt ≤ α′] holds for every t ∈ [T ], and it follows that∣∣∣∣∣

T∑
t=1

(xt − pt) · sgn(α− pt)
∣∣∣∣∣

=
∣∣∣∣∣

T∑
t=1

(xt − pt) ·
(
1 [pt ≤ α]− 1 [pt ≤ 1] + 1

[
pt ≤ α′])∣∣∣∣∣

≤
∣∣∣∣∣

T∑
t=1

(xt − pt) · 1 [pt ≤ α]
∣∣∣∣∣+

∣∣∣∣∣
T∑

t=1
(xt − pt) · 1 [pt ≤ 1]

∣∣∣∣∣+
∣∣∣∣∣

T∑
t=1

(xt − pt) · 1
[
pt ≤ α′]∣∣∣∣∣

≤ 3stepCE(x, p).

This proves the lower bound on stepCE(x, p).

A.3 Step Calibration and Its Subsampled Variant

Lemma A.1. For any x ∈ {0, 1}T and p ∈ [0, 1]T ,

1
2stepCE(x, p) ≤ stepCEsub(x, p) ≤ 1

2stepCE(x, p) + O(
√

T ).

Proof. Fix x ∈ {0, 1}T and p ∈ [0, 1]T . For the lower bound part, suppose that the supremum in
stepCE(x, p) is achieved at α⋆,4 i.e.,

stepCE(x, p) =
∣∣∣∣∣

T∑
t=1

(xt − pt) · 1 [pt ∈ [0, α⋆]]
∣∣∣∣∣ .

Then, we have

stepCEsub(x, p) ≥ E
y∼Unif({0,1}T )

[∣∣∣∣∣
T∑

t=1
yt · (xt − pt) · 1 [pt ∈ [0, α⋆]]

∣∣∣∣∣
]

≥
∣∣∣∣∣ E
y∼Unif({0,1}T )

[
T∑

t=1
yt · (xt − pt) · 1 [pt ∈ [0, α⋆]]

]∣∣∣∣∣ (convexity of x 7→ |x|)

= 1
2

∣∣∣∣∣
T∑

t=1
(xt − pt) · 1 [pt ∈ [0, α⋆]]

∣∣∣∣∣ = 1
2stepCE(x, p).

For the upper bound, we assume without loss of generality that p1 ≤ p2 ≤ · · · ≤ pT , since both
stepCE and stepCEsub are invariant to the reordering of the entries (in x and p simultaneously). Let

4α⋆ is well defined, as the term in the supremum takes at most T + 1 different values over all α ∈ [0, 1].
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S := {t ∈ [T − 1] : pt < pt+1} ∪ {T}. For each t ∈ {0, 1, . . . , T}, define At := ∑t
i=1(xi − pi). Over

the randomness in y ∼ Unif({0, 1}T ), define

Xt :=
t∑

i=1
(yi − 1/2) · (xi − pi).

Then, stepCE(x, p) and stepCEsub(x, p) can be simplified into

stepCE(x, p) = max
t∈S
|At|,

and

stepCEsub(x, p) = E
y

[
max
t∈S
|At/2 + Xt|

]
≤ 1

2 max
t∈S
|At|+ E

y

[
max
t∈[T ]

|Xt|
]

= 1
2stepCE(x, p) + E

y

[
max
t∈[T ]

|Xt|
]

.

Therefore, it remains to control the term Ey

[
maxt∈[T ] |Xt|

]
by O(

√
T ). Note that (Xt)T

t=0 is a
martingale in which each displacement (Xt − Xt−1) | Xt−1 has a variance of (xt − pt)2/4 ≤ 1/4.
Kolmogorov’s inequality implies that, for every τ > 0,

Pr
[
max
t∈[T ]

|Xt| ≥ τ

]
≤ T/4

τ2 .

It follows that

E
[
max
t∈[T ]

|Xt|
]

=
∫ +∞

0
Pr
[
max
t∈[T ]

|Xt| ≥ τ

]
dτ

≤
∫ +∞

0
min

{
T

4τ2 , 1
}

dτ = O(
√

T ).
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