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Abstract

Bias mitigation methods are commonly evaluated with a single fairness task, which aims
to reduce performance disparity with respect to a single protected attribute (e.g., gender)
while maintaining predictive performance for target labels (e.g., is-cooking). In this work,
we question whether this mode of evaluation provides reliable insights into the effectiveness
of bias mitigation methods. First, there are multiple protected attributes in real-world
applications, such as skin color, gender and age. Second, we find that the results of these
studies vary greatly depending on the choice of fairness task for evaluation. We address
these shortcomings by first evaluating bias mitigation methods on the CelebA dataset on
54 different fairness tasks, which involve various selections and intersections of multiple
protected attributes. Our thorough analysis shows that simple importance weighting is
still a consistently competitive method for bias mitigation. We then extend our analysis to
ImageNet’s People Subtree, which poses qualitatively different real-world challenges than
CelebA: having hundreds of protected groups while fewer than 10% of the training dataset has
protected attribute labels. We find that strategies to reduce model complexity are important
in this scenario. We show that leveraging these insights can reduce the bias amplification of
empirical risk minimization by 28% on ImageNet’s People Subtree.

1 Introduction

There is a significant potential for harm when the predictive properties of machine learning models vary
across different demographic populations, e.g., protected groups. This is indeed the case for many real-world
applications including facial analysis (Buolamwini & Gebrul, |2018]), ad delivery (Sweeney|, 2013) and search
engines (Noble, 2018)). Algorithmic bias is particularly challenging to address in deep learning systems, as
obtaining formal guarantees is impractical and commonly-used algorithmic fairness techniques do not scale.

Recent works seek means of harm reduction by proposing bias mitigation methods for deep learning (Wang
et al.| [2020; [Sagawa et al.l 2020} |Liu et al., |2021} |[Zhao et al.| 2017; [Edwards & Storkey, [2015} |Arjovsky et al.l
2020; |Pezeshki et all [2020). These methods aim to empirically reduce quantitative measures of algorithmic
bias without significantly harming overall performance. A commonly used dataset for empirically validating
these methods is CelebA (Liu et al. [2015)), which labels celebrity images with 40 attributes such as hair color.
Bias mitigation methods are often evaluated on a single fairness task on CelebA, which aims to maintain a



computer vision model’s predictive performance on a target label while reducing bias metrics with respect to
a protected attribute (e.g., gender). The target label and protected attribute for the fairness task are selected
by the experiment designer from CelebA’s set of 40 available attributes.

We question whether this mode of evaluation truly provides reliable insights into the effectiveness of bias
mitigation methods. First, there are many protected attributes in real-world applications, such as skin
color, gender and age; bias mitigation methods need to protect not only individual attributes, but also the
intersections of protected attributes (Crenshaw, [1989). Second, it is unclear how much the findings depend
on the particular fairness task selected for evaluation. To this end, we describe two novel sets of experiments:
(1) we evaluate bias mitigation methods on 54 CelebA fairness tasks by sweeping over different choices of
protected attributes and different intersections of these protected attributes; and (2) we adapt bias mitigation
methods for label-scarce settings and apply them to a real-world algorithmic bias problem on the ImageNet
dataset.

Summary of Results: In Section [4] we study how sensitive the results of CelebA bias mitigation
experiments are to their choices of protected attributes. We survey a diverse selection of bias mitigation
methods and evaluate them on many different choices of protected groups, including some intersectional
groups that we induce from the intersections of multiple protected attributes. Our analysis finds that the
relative performances of bias mitigation methods vary greatly depending on which protected groups the
experiment designer selects; this results points to the unreliability of CelebA experiments in prior works
that test their methods on only one choice of protected groups. Our comprehensive experiments find that,
in fact, simple importance weighting regularly outperforms all other bias mitigation methods. We also
identify several—to the best of our knowledge—previously unreported trends, including the sensitivity of
reweighting-based methods to noisy protected attribute labels and the non-monotonicity of popular bias
metrics in the transition from single-attribute to intersectional multi-attribute tasks.

In Section |5}, we extend our critical analysis of bias mitigation methods to the ImageNet dataset (Deng et al.|
2009), where [Yang et al.| (2020) recently labeled the People Subtree with protected attributes such as age and
gender. Whereas designations of “target” and “protected” attributes on CelebA are artificially specified by an
experiment designer, ImageNet poses a well-defined real-world algorithmic fairness challenge, lending a more
realistic test environment for bias mitigation. ImageNet also poses qualitatively different challenges than
CelebA: the underlying learning task is more challenging (hundreds of target labels/classes), there are more
protected groups to address (196), and protected attribute labels are scarce (less than 10% of images labeled).
We find that these factors limit the effectiveness of existing bias mitigation methods, and thus propose
techniques for “adapting” these methods to ImageNet: knowledge distilation and attribute decomposition.
Our experiments provide the first evaluation of bias mitigation methods on the ImageNet dataset and singles
out two methods as being particularly effective after being properly “adapted”: importance weighted ERM
and [Wang et al.| (2020)’s “domain independence” method.

2 Related Work

Bias Mitigation in Deep Learning Prior works have highlighted concerns of algorithmic bias in a number
of real-world deep learning applications, including commercial image classifiers (Buolamwini & Gebru, [2018)
and natural language processors (Alvi et al.| [2018; [Bolukbasi et al., 2016} |Garg et al.| [2018). However,
classical algorithmic fairness techniques are of limited applicability for these deep learning settings, as they
typically either assume simple models (e.g. linear regression) or appeal to costly procedures like no-regret
dynamics (Agarwal et al.l 2018} |Saerens et al. |2002; Dwork et all, |2012; |Zhang et al.| [2018]). Recent literature
have instead sought bias mitigation methods designed for deep learning applications (Edwards & Storkey,
2015 [Ramaswamy et all 2021; [Ryu et al.| |2018; [Wang et al.l [2020; |Zhao et al., |2017). They borrow on
techniques from related fields including robust optimization (Adragna et al., [2020; Liu et al., |2021} [Sagawa
et al.l [2020)), causal inference (Arjovsky et al., |2020; |Creager et al., |2021; Kusner et al., 2017 Madras et al.|
2019), and representation learning (Pezeshki et al., |2020)). As obtaining theoretical guarantees for deep
learning bias mitigation methods is impractical, prior works have resorted to various choices of summary
statistics for quantifying algorithmic bias; these metrics include worst-case accuracy (weighted on the worst-off
group), mean accuracy (balanced over protected groups), bias amplification scores (Zhao et al., |2017)), and
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A graphic illustration of CelebA bias mitigation experi-
ment designs used in prior works to validate their pro-
posed methods (left) and the experiment designs we
propose in this work (right). Each experiment design
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predict and an attribute (e.g., “Is Male?”) to mitigate
bias against. We find these design choices significantly
influence experiment results. Our experiments sweep
over many experiment designs including “intersectional”
settings with multiple protected attributes.

intersectional bias scores (Foulds et al. 2020)). Other works have proposed evaluation mechanisms that
explicitly generate counterfactuals to measure bias but require significant computational or human resources
(Balakrishnan et al., 2020; Denton et al [2020)).

Intersectional Multi-Attribute Fairness One of our goals is extending prior empirical analyses of bias
mitigation methods to intersectional settings (Wang et al.| 2020} [Shrestha et al.| 2021} [Liu et al., [2021} [Sagawa
. Prior works have proposed methods for specifically addressing intersectional fairness concerns
at classical learning settings (Kang et al., 2021; |[Kearns et al. [2018; [Foulds et al. [2020; Makar et al. [2021}
[Wang et al. [2022). In this work, we take a step further and perform a thorough empirical analysis on bias
mitigation for large-scale computer vision tasks. While our work focuses on empirical analyses and largely
abstracts away from social considerations, other works have directly connected the technical constraints
of algorithmic intersectional bias mitigation to social implications (see, e.g., Wang et al.| (2022) and Kong

(2022))

Label-Scarce Bias Mitigation In many settings, it may not be practical to label the protected attributes
of all datapoints; this is indeed the case for ImageNet, where less than 10% of the People Subtree has been
annotated with protected attributes (Deng et all [2009; [Yang et al) [2020). The problem of bias mitigation
in settings where protected attribute information is scarce has been studied by Dai & Wang| (2021) for
graph neural networks and [Ho et al. for adversarial learning. Other works have studied entirely
unsupervised bias mitigation (Chen et al. 2019; Hashimoto et al., |2018) and the use of proxy labels for
protected attributes (Kallus et al., |2020; |Awasthi et al., 2021]).

3 Preliminaries

Problem Formulation Formally, we are interested in the task of learning a classification model b : X — Y
that maps from a feature space X to a label space ). For instance, if we desire h to predict whether a
photographed individual has blond hair, X may be the space of 256x256 grayscale images and Y the binary
set {yes,no}. We are also interested in our model h being “fair” with respect to a set of protected groups G.
Continuing our example, if G is the set of all age groups, we may desire our model’s predictions of whether
a photographed individual has blond hair to be independent of the individual’s age. Precise notions of
algorithmic fairness have been debated extensively in literature, but the most commonly accepted include
demographic parity (Feldman et al., 2015 and equalized odds (Hardt et al., [2016)).




Protected Attributes We define protected groups as arising from a set of protected attributes, Attrs. We
denote the set of potential values of a protected attribute a € Attrs as A, and use A := [],capirs Aa tO
denote the set of all possible intersections of protected attributes. We accordingly define a protected group
g as individuals who share protected attributes and the set of all protected groups G as isomorphic to A.
In our running example, G arises from choosing “age” as a single protected attribute where Attrs = [age],
A = Auge = {Children, Young Adults, ... }.

When |Attrs| = 1, i.e. we are only concerned with a single protected attribute, we say that our set of
protected groups G is not intersectional. When & := |Attrs| > 1, we say that our set of protected groups G is
k-intersectional, as they arise from the intersections of k protected attributes. In these cases, it is important
that our learned model h satisfies intersectional fairness (Foulds et al., |2020). That is, we not only desire
h to treat similarly older vs. younger individuals and longer vs. shorter haired individuals, but also their
intersections: e.g. older longer-haired individuals and younger shorter-haired individuals.

Fair Learning Datasets In the datasets we use to evaluate bias mitigation methods, each datapoint
consists of the tuple (z,y,g9) € X x Y x G. That is, datapoints not only provide features z and labels y for
supervised learning, but also which protected groups g they correspond to. We also encounter label-scarce
datasets where x,y are available for all datapoints, but protected group labels g are only available for a small
subset of datapoints. We will use the adjectives “labeled”/“unlabeled” to refer to whether g is available—not
whether y is available. “Unlabeled bias mitigation methods” are those that only use x,y and not g.

3.1 Measures of Algorithmic Bias

Given that obtaining theoretical guarantees is impractical in deep learning settings, an important aspect
of evaluating bias mitigation algorithms is identifying quantitative metrics of their efficacy. However, it is
difficult to quantify algorithmic bias with a single real-valued statistic, as traditional notions of algorithmic
fairness like demographic parity and equalized odds are matrix-valued constraints. Prior works have instead
identified useful surrogate metrics that offer more meaningful and less noisy feedback than, for instance,
naively averaging over the matrix of demographic parity violations (Wang et al., 2020} |Shrestha et al.| [2021;
Liu et al., 2021)). We similarly adopt the use of these surrogate metrics for our analyses.

Importance-weighted accuracy (or “reweighted accuracy”) is an importance weighted accuracy metric, where
importance weights are selected so that each protected group has equal weight:

Acey(h) = m Pr(Y =h(X) |G =g) (1)

geg

In multi-label settings, we equivalently define a notion of reweighted Mean Average Precision (mAP). High
reweighted accuracy or reweighted mAP is a strong indicator of good predictive performance and a weak
indicator that the model does not significantly overfit to heavily represented groups.

Bias amplification measures the difference between a group’s ground-truth representation for a label class
versus the group’s predicted representation (Zhao et al.l |2017)):

sy :=Pr(G=g|MX)=y)—Pr(G=g|Y =y) where g := argmax g Pr(G =g | h(X) =y). (2)

This score does not signal predictive performance, but a positive score strongly indicates that the model may
amplify prediction biases in the data. Thus, we generally seek a bias amplification score close to or below
zero, though non-positive scores are not proof for the absence of bias. This score is vector-valued (defined per
class y), so when target labels are non-binary |)| > 2, we average the score vector: s = ﬁ > ey Sy- Bias
amplification have been widely adopted by prior works like |[Wang et al.| (2020), but has been found to be
limited in what it captures (Wang & Russakovsky) 2021)).

The intersectional bias score (Foulds et al., |2020) summarizes demographic parity violations.

€, := max argmin, s.t. exp(—e) < Pr(h(X) =y
T ameg T PO S B(h(X) =y [ G = o)



Table 1: List of the bias mitigation algorithms evaluated in Sections 4 & 5.

Name Abbreviation Needs Attribute Labels Reweighting Adversarial
Empirical Risk Minimization (ERM) U-ERM No No No
Importance Weighted Empirical Risk Minimization W-ERM Yes Yes No
Group D. Robust Optim. Sa%awa et al.! 2020! WA-GDRO Yes Yes Yes
Adversarial Censoring (Edwards torkey!|2015 A-Cens Yes No Yes
Invariant Risk Minimization (Arjovsky et al.;|2020) IRM Yes No No

Domain Independence (Wang et al./|2020 Ind Yes No No
Domain Discriminative work et al. Disc Yes No No
Spectral Decoupling (Pezeshki et al./|2020 U-SD No No No

Just Train Twice iu et al. UWA-JTT No Yes Yes

Similar to bias amplification, this score does not signal predictive performance. A high intersectional bias

score indicates significant violations of the demographic parity constraint. These scores are also vector-valued
and defined per class y, so we again average the score vectors: € = \Tlfl Zyey €y

3.2 Bias Mitigation Methods

Our experiments study a diverse and representative set of bias mitigation methods. We list these in Table
and categorize them along three axes: (1) do the methods need protected group labels, (2) do they involve an
adversary in their algorithm, and (3) is their mechanism of action the manipulation of importance weights.

Baselines Our studies include, as baselines, empirical risk minimization and importance weighted empirical
risk minimization. We use “empirical risk minimization” to refer to training models on their original loss
function and with their original model architecture. This terminology is just convention; many bias mitigation
methods are technically also empirical risk minimization. “Importance weighted empirical risk miminization’
simply entails modifying one’s loss function so that each datapoint (z,y, g) is weighted inversely proportional
to the number of datapoints belonging to the same protected group g. This ensures that each protected
group has approximately equal representation in the risk function (Saerens et al.| [2002)).

)

Adversarial Methods (A) Some of the bias mitigation methods we include are based on robust optimiza-
tion principles. The Group Distributionally Robust Optimization (GDRO) method uses a no-regret algorithm
(Hedge) to adversarially sample importance weights w, for each protected group g € G so as to (softly)
maximize the current batch loss (Sagawa et al., 2020). This incentives models to prioritize their performance
on protected groups on which they currently perform poorly. The Adversarial Censoring method also uses
an adversary, with the goal of penalizing one’s model if its internal representation allows for predicting
the protected group of a datapoint (Edwards & Storkeyl 2015). This incentives models to learn internal
representations that are “blind” to protected group membership.

Unlabeled Methods (U) We also include a number of “unlabeled” bias mitigation methods in our
experiments, including [Pezeshki et al. (2020)’s Spectral Decoupling (SD) and (2021)’s Just-Train-
Twice (JTT) methods. JTT uses importance weighting to prioritize datapoints that a naively trained model
is likely to err on. It first trains an initial model without bias mitigation and then trains a new model, this
time upweighting datapoints if the initial model misclassified them. SD uses regularization to incentivize
models to not overfit to the use of easy-to-learn features. One shortcoming of SD is that it is intractable
to tune its hyperparameters for classification tasks with many classes; even tuning its hyperparameters for
binary classification required 800 GPU hours (Pezeshki et al., |2020). As such, we only evaluate the SD
method on binary classification tasks on CelebA where we can tune SD’s hyperparameters. We also include
SD for completeness on our ImageNet experiments using default hyperparameters.

Other Methods Other bias mitigation methods we study also involve modifying a model’s architecture.
The Domain Independent and Domain Discriminative methods train multiple copies of a model, with each
copy specialized for a specific protected group (Wang et al [2020)). In other words, these methods seek equal
representation of each protected group in a model’s parameters via segregation. Invariant risk minimization
(IRM) is a family of methods inspired by causal learning aimed at learning internal representations that
are invariant to protected groups, or confounding variables more generally (Arjovsky et al., [2020). In our
experiments, we include |Arjovsky et al| (2020)’s IRMv1 implementation of IRM.




Our experiments find that, even with significant hyperparameter tuning and custom modifications, the IRM
and Adversarial Censoring methods do not perform competitively with other bias mitigation methods and
baselines. Thus, we only include these methods in Appendix figures.

4 Revisiting Bias Mitigation Experiments on CelebA

In this section, we analyze the performance of bias mitigation methods on the CelebA dataset (Liu et al.,
2015). We extend prior experiment designs by Wang et al.| (2020, [Liu et al.| (2021)), and |Shrestha et al.| (2021)
to include a wider range of algorithmic fairness tasks and further analyze bias mitigation methods.

4.1 Experimental Setup

Two common “base” learning tasks on CelebA include the binary classification task CelebA-SL where one
predicts CelebA’s “blond hair” attribute, and the multi-label classification task CelebA-ML where one predicts
all of CelebA’s 40 available attributes. Previous works on bias mitigation have often differed in which base
learning task their experiments build on, e.g. [Liu et al.| (2021) and [Shrestha et al.| (2021)) use CelebA-SL
while [Wang et al.| (2020) uses CelebA-ML. For completeness, we include both in our experiments.

CelebA experiments in prior works design and evaluate bias mitigation methods on a single algorithmic
fairness task: choosing a base learning task to solve and a single protected attribute to be fair to. In contrast,
our analysis sweeps over 54 different fairness tasks. That is, on both CelebA-SL and CelebA-ML, we run bias
mitigation experiments for 27 different choices of G. Recall that G specifies the set of “protected groups” we
want our learned model h to be fair with respect to, so a different choice of G entail a different fairness task.
In each experiment, we apply the bias mitigation methods listed in Table [1| to the training of ResNet-50s (He
et al., 2016 and evaluate them on the metrics from Section We defer precise hyperparameter and training
procedure details to the Appendix, Section

27 choices of Gs We generate our 27 choices of G using four collections of protected attributes: Balanced,
Imbalanced, Inconsistent, and Protected. The Balanced and Imbalanced collections consist of 7 most balanced
protected and the 7 least balanced CelebA attributes, respectively. The Inconsistent collection consists of 6
inconsistently labeled attributes noted by Ramaswamy et al.| (2021]). The Protected collection consists of 7
legally or societally sensitive attributes. Given an attribute collections {ai}i?:h for example the Balanced

collection with k = 7 attributes ordered a, ..., a7, we generate k choices of Gs. Specifically, for each i € [k],
we include the set of protected groups G(*) that arise from the intersection of the first ¢ attributes in our
collection: G = Ay, X -+ X Ag,. This way, the fairness tasks we generate GM, ..., G® not only capture

the behavior of bias mitigation methods on different choices of protected attributes, but also on different
degrees of intersectionality.

Figures We aggregate the results from all CelebA experiments in Figure 2l These bar plots summarize
the experiment results for our 27 choices of G, depicting the mean and standard deviation of three metrics
(y-axes): importance-weighted accuracy/mAP, bias amplification scores (Zhao et al [2017)), and intersectional
bias scores [Foulds et al.|(2020). In Figures |3, we instead plot performance metrics for each bias mitigation
method against specific groups of experiments. In Figures d,e,f) and Figures (d,e,f), we group
experiment settings in terms of intersectionality: if G arises from the intersections of 3 protected attributes,
we plot its experiment results at x = 3. This allows us to, for instance, identify which bias mitigation methods
are most effective for intersectional fairness settings. In Figures a,b,c) and Figures a,b,c)7 we group
experiment settings by the performance of learning without bias mitigation. If, for a choice of G, models
learned without bias mitigation have an average bias amplification score of 0.01, we plot experiment results
for this G at = 0.01. This allows us to, for instance, identify which bias mitigation methods are most
effective in settings where unmitigated learning results in exceptionally great bias. In the Appendix, we
provide additional CelebA experiments, including replications of experiments in prior works, and figures,
including analogies of Figure [3| for specific attribute collections (e.g. Inconsistent).
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Figure 2: The average performance of ResNet50 models trained using bias mitigation methods on the CelebA
dataset. Twenty seven different experiment settings, each designating different sets of protected groups, are
represented. Error bars denote 68% confidence intervals. All results are on a test split. Greater reweighted
mAP (mean average precision) and reweighted acc (accuracy) indicate more precise/accurate predictions.
Greater bias amp (bias amplification) and inter bias (intersectional bias) imply that models score poorly on
quantitative estimates of algorithmic bias.

4.2 Key Findings

The outcomes of a CelebA bias mitigation experiment varies greatly depending on one’s choice
of protected groups G. This phenomenon is particularly noticeable by comparing the plots of bias
amplification and intersectional bias scores in Figures [2(1)|/|2(ii)| with those of Figures|3(i)}43(ii)} In Figures
2(1)|2(ii)} large confidence intervals make it hard to distinguish between the effectiveness of different methods
in a statistically significant fashion. This is because Figure [2] averages results over all choices of G, which
confounds the performance of each method with the variable difficulty of each experiment setting. In contrast,
when we unpack our choices of G and group them in terms of difficulty and intersectionality in Figures
3(1))3(i1), we do observe statistically significant trends. We can further observe that the relative differences
in effectiveness between bias mitigation methods vary depending on which fairness tasks one studies. For
instance, in Figure e), we see that the Group DRO method results in lower bias amplification scores on
average than simple importance weighted ERM (W-ERM) for non-intersectional choices of G, but this trend
reverses for intersectional choices of G. Our findings suggest that the evaluation of bias mitigation methods
on a singular CelebA fairness task do not give a complete picture and—as we describe in the Appendix—may
misleadingly suggest that certain bias mitigation methods outperform others when such is not the case.
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Figure 3: The average performance of ResNet50 models trained using bias mitigation methods on the CelebA
dataset. Error bars denote 68% confidence intervals. All results are on a test split. These figures depict
the same learning tasks, experiment settings, and metrics as Figure 2l In contrast to Figure [2] these figures
spread metrics from different experiment settings along the x-axis. The top rows (a-c) plot the performance
metrics of different methods against the metrics of learning without bias mitigation (U-ERM) in the same
experiment setting. The bottom rows (d-f) plot the performance metrics of different methods against how
intersectional an experiment setting is, i.e., the number of protected attributes.
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Figure 4: The average intersectional bias scores of ResNet50 models trained using bias mitigation methods on
the CelebA dataset. Error bars denote 68% confidence intervals. All results are on a test split. These figures
replot the intersectional bias figures from Figures c,f) and (C,f) using normalized intersectional bias
scores to better visualize the difference between bias mitigation methods. We normalize these plots by, at
each increment of the x-axis, offsetting all y-values by the average intersectional bias of learning without
mitigation (U-ERM).

Importance weighted ERM remains a consistently effective method of bias mitigation. Whereas
the effectiveness of other bias mitigation methods vary significantly based on which CelebA fairness task
one looks at, importance weighted ERM (W-ERM) consistently outperforms or ties all other methods in
every metric and for almost all choices of G (Figures and [3(ii)). This is surprising as simple importance
weighting is one of the earliest approaches to bias mitigation (Saerens et all [2002), and again highlights the
importance of evaluating methods on multiple choices of G.

The Group DRO method performs almost as well as importance weighted ERM on CelebA-SL tasks in all
three metrics (Figures [3(ii)[(a-¢)); however, the method is less effective at bias mitigation in intersectional
settings (Figures [B(ii)[e,f)). The Domain Independent method performs at least as well as importance
weighted ERM on CelebA-ML tasks in terms of reweighted mAP and intersectional bias scores (Figures
B(Dla,c,d.f)); however, the method is less effective at reducing bias amplification (Figures [3(D)b,e)). On
the other hand, Group DRO and Domain Independent methods are less effective on CelebA-ML (Figures

B(D|(a,d)) and CelebA-SL (Figures [3(ii)[a,d)) tasks respectively.

The Spectral Decoupling method is surprisingly effective for a method that requires no protected attribute
labels. It achieves the highest reweighted accuracy/mAP on CelebA-SL tasks (Figure [3(ii){(a,d)), although
it does not significantly reduce bias amplification and intersectional bias scores (Figb,c,e,f)). In
addition, the approach is of limited practicality beyond binary classification, as its number of hyperparameters
scales linearly in the size of one’s label space (|)|) and even tuning the method for just binary classification
(where |Y| = 2) requires 800 GPU hours. The Just Train Twice method is uncompetitive across the board

(Figures 3(i)[a-e) and B(ii)[a-e)).



Bias amplification scores and importance weighted accuracy/mAP are non-monotone. One
may expect that the performance of a bias mitigation method on a set of fairness tasks should be generally
monotone in the difficulty or intersectionality of said tasks. In other words, one would expect that the plots
in Figure [3| be monotone. This is indeed the case for intersectional bias scores (Figures B(i)|(c,f), B(i)c, )
and reweighted mAP (Figures a,c)). However, many others, e.g. Figures d,e), have no discernible
pattern along the x-axis. We can rule out the role of noise in such monotonicity as we can observe kinks
that exceed our confidence interval. Instead, we deduce that the x-axis (i.e., the difficulty or intersectionality
of our experiment settings) does not fully account for variations in the performance of our methods. We
qualitatively observe that there is more regularity in Figures B(i)(a,b), B(ii)[a,b) than Figures B({)[(d,e),
d,e)7 suggesting that variations between different experiment settings are better explained by variations
in the performance of unmitigated learning than by intersectionality. This finding is intuitive, as the challenges
posed by intersectionality should already be partially captured by the performance of models learned without
bias mitigation.

5 Bias Mitigation Methods on ImageNet

In this section, we extend our critical analyses of bias mitigation methods to the ImageNet dataset, in
particular, the People Subtree (Deng et al.l |2009; |Yang et al., |2020). This dataset is significantly larger and
more challenging than CelebA, with less than 10% of images have been annotated with protected attributes.

Experimental Setup. The ImageNet People dataset consists of 124,693 images of humans, each labeled
with a “synset”, an ImageNet term for image category. Examples of synsets on the People subtree include
“programmer” and “child”. Recently, Yang et al.| (2020]) annotated datapoints from the ImageNet People
subtree with 3 protected attributes: gender, skin color, and age. With these annotations, |Yang et al.| (2020)
identified numerous instances of the under-representation of protected groups in ImageNet. The intersections
of these attributes compose 196 intersectional groups, i.e., |G| = 196, which we will use to design a challenging
real-world benchmark on which to evaluate bias mitigation methods. An important aspect of this benchmark
is that only 15,981 images in the dataset have been labeled with protected attributes; this poses a serious
challenge with attribute label scarcity.

We divide our dataset into a training split with 124,693 images (of which 5,861 have protected attribute
labels), and validation and test splits with 5,327 images each (all of which have protected attribute labels).
In our experiment, we apply the bias mitigation methods listed in Table [1| to the training of ResNet50s (He
et al.l |2016]) on our ImageNet training set. We then evaluate them on metrics from Section 3.1.

Most of the bias mitigation methods we study depend on access to protected group labels, rendering most
of our ImageNet training set unusable for them. As such, in our experiment we first pretrain each of our
ResNet50 models using empirical risk minimization with standard risk functions (i.e., no bias mitigation).
We then use our bias mitigation methods to finetune the pretrained models. In Appendix [A3] we show that
omitting this pretraining stage results in poor performance.

Findings Table 2] summarizes our evaluations of bias mitigation methods on the ImageNet dataset. Overall,
we observe similar qualitative trends as Figure in terms of which methods are most effective. In particular,
Importance Weighted ERM and the Domain Independent method are most effective and improve upon
un-mitigated learning (U-ERM) in terms of average reweighted accuracy (47%, 47% vs 45%) and bias
amplification (7.6, 7.4 vs 8.2).

However, we highlight that the improvements afforded by the use of these bias mitigation methods are
not significant on the ImageNet dataset. Even the reductions in bias amplification afforded by Importance
Weighted ERM and the Domain Independent method fall within a standard deviation in Table 2] This is in
contrast to CelebA experiments, where these same bias mitigation methods resulted in statistically significant
reductions in bias metrics on a diverse range of fairness tasks. In the following sections, we show that this is
due to label-scarcity and identify several techniques for improving the effectiveness of bias mitigation methods
in ImageNet’s label-scarce setting.
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Table 2: The average performance of ResNet50 models trained using bias mitigation methods on the ImageNet
dataset. Standard deviation is indicated by 4. Importance weighted ERM (W-ERM) and the Domain
Independent method (Ind) are the most effective bias mitigation techniques. However, no bias mitigation
method is significantly better than naively training without bias mitigation (U-ERM).

Reweighted Acc. Bias Amp. 100x Inter. Bias
U-ERM 45.38 £+ 0.404 8.153 £0.95 2.684 + 0.03
UWA-JTT | 45.42 + 0.460 7.603 +1.05 2.694 £0.01
U-SD 36.59 & 0.352 8.489 £1.16 2.621+0.03
WA-GDRO| 45.20+0.136 8.910£1.70 2.697 £ 0.01
W-ERM 47.67 £ 0.812 7.611 £0.11  2.687 £ 0.03
Ind 47.24 +0.817 7.402+£0.95 2.688+0.05

5.1 Scaling by Reducing Model Complexity

We identify two techniques for improving the effectiveness of bias mitigation methods in ImageNet’s label-
scarce setting: knowledge distillation and attribute decomposition. We apply them to two methods that we
identified as particularly effective in Table 2} Importance Weighted ERM and the Domain Independent
method. Intuitively, knowledge distillation and attribute decomposition follow the principle of parsimony and
mitigate the effects of label scarcity by reducing the internal complexities (e.g., degrees of freedom) of bias
mitigation methods.

Attribute Decomposition (AD). The complexity of most bias mitigation methods scale linearly with
the number of protected groups, and thus exponentially in the number of protected attributes. Attribute
Decomposition modifies bias mitigation methods so that their degrees of freedom grow linearly with the
number of protected attributes. One drawback of AD is that it limits the ability of bias mitigation methods
to address intersectional effects. We now describe AD implementations of Importance Weighted ERM and
the Domain Independent method on a hypothetical learning problem defined by the tuple (X,Y, G, A, Attrs),
as per Section [3]

The Domain Independent (Ind) method (Wang et al.,|2020) trains a specialized model hy for each protected
group g € G. Each of these models learns the same original X — ) task, but only trains on datapoints
corresponding to their group. During inference, given an input x, the method sums the outputs of every
specialized models, outputting > . hy(x). The AD variant of the Domain Independent method trains, for
every protected attribute a € Attrs and for every value v € A, that a may take, a specialized model h,_,.
This model h,, only trains on datapoints whose protected attribute a takes the value v. During inference,
given an input x, our AD method sums the outputs of these models: >, - xiirs 2 ven, Paw(T)-

Importance Weighted ERM modifies one’s loss function so that each datapoint (x,y,g) is weighted by a

group-specific weight wy :=1/ Pg (¢’ = g), where Sg is the empirical distribution of protected groups over
g'~Sg

the training dataset. The AD variant of Importance Weighted ERM specifies, for every protected attribute

a € Attrs, an importance weight for every value v € A, that a may take: wq, =1/ Pg (v' = v). Here,
v'~S,

S, is the empirical distribution of values that the protected attribute a takes over the training dataset. A
datapoint with protected attribute values v € A is then given the importance weight ] Waq,v, in the
loss function.

acattrs

Knowledge Distillation (KD). Some bias mitigation methods rely on training different models for each
protected group (Wang et al.,|2020). For instance, recall that the Domain Independent method trains multiple
copies of a model. Knowledge Distillation modifies these methods by consolidating these multiple copies back
into a single model. Specifically, we can treat these model copies {hy | g € G} as teacher classifiers and apply
knowledge distillation (Hinton et al., [2015)) to learn a single student classifier hy using the following loss

function:
U(ha(x), y) + AK L(ha(x), hy(x)). (3)
Here, h, are already trained models, £(-,-) is our loss function and X is the weight for the distillation term.

Findings. Table [3] compares Importance Weighted ERM and the Domain Independent method with
their Attribute Decomposition and Knowledge Distillation counterparts. The fourth row describes an
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Table 3: The average performance of ResNet50 models trained using bias mitigation methods on the ImageNet
dataset. Standard deviation is indicated by +. Knowledge Distillation (KD) and Attribute Decomposition
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group (a).

each protected attribute value (b).

(AD) each improve the effectivess of bias mitigation methods by a statistically significant margin.

Reweighted Acc. Bias Amp. 100x Inter. Bias
Ind 47.24 £ 0.817 7.402£0.95 2.688 £+ 0.05
w/ AD 45.12 +0.107 6.906 +0.24 2.621 +0.03
w/ KD 47.68 + 0.521 6.318 £1.00 2.693 £ 0.01
w/ KD & AD| 47.47 £+0.323 5901 £0.73 2.689+0.01
W-ERM 47.67 +0.812 7.611 £0.11  2.687 £+ 0.03
w/ AD 47.61 +0.478 6.843 £0.64 2.709 £+ 0.03

implementation of the Domain Independent method using both AD and KD. AD and KD significantly
improve the effectiveness of the two bias mitigation methods, particularly as measured by Bias Amplification
scores. KD reduces bias amplification for Domain Independent (7.4 — 6.3) while maintaining accuracy
metrics. AD reduces bias amplification for both methods (7.4 — 6.9 for Ind and 7.6 — 6.8 for W-ERM).
In addition, combining AD+KD yields the best bias amplification score of 5.9. While we previously found
in Table [2] that no bias mitigation method reduced bias amplification scores by a statistically significant
quantity, the use of Attribute Decomposition and Knowledge Distillation leads to a statistically significant
reduction in bias amplification from 8.2 + 1 to 5.9 £ 0.7.

6 Conclusion

We have proposed a broader analysis of bias mitigation methods on the commonly used CelebA dataset
and the use of the ImageNet dataset as a test-bed for label scarce bias mitigation. Our analyses reveal that
the high reported performance of many bias mitigation algorithms is due to somewhat arbitrary choices in
experiment design, and in fact plain importance weighting remains empirically the most effective and reliable
bias mitigation method. We have proposed two techniques for adapting bias mitigation algorithms to the
label-scarce ImageNet dataset for evaluation. We hope this work encourages a more critical review of popular
bias mitigation methods and the future use of more diverse sets of empirical benchmarks.

We now highlight several future research directions:

o Identify potential mechanisms for the incredible robustness of simple importance weighting.

¢ Gain a better understanding for why otherwise effective bias mitigation methods break down when
evaluated on a more diverse set of tasks.

e Explore other schemes for overcoming sparsity in protected attribute labels.
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A Appendix: Additional Experiments and Figures

A.1 Replication Experiments

In this section, we replicate experiment designs considered in previous works and extend their results to
include additional methods and metrics.

Table 4: [Shrestha et al.| (2021) Replication (CelebA-SL)

Model Inter. Bias Bias Amp Accuracy Reweighted Accuracy  Min Accuracy
U-ERM 1.005 £ 0.109 —0.024 £0.012  0.923 £ 0.012 0.848 £+ 0.012 0.604 £ 0.065
WA-GDRO | 0.558 +0.049 —0.065 £+ 0.008 0.911 £ 0.010 0.895 + 0.009 0.833 + 0.034
IRMv1l 1.071 £0.148  —0.010 £0.010  0.940 £ 0.007 0.793 £ 0.009 0.404 £ 0.013
U-SD 0.746 +0.032  —0.057 £ 0.004  0.884 &£ 0.005 0.887 £ 0.005 0.817 £ 0.025
W-ERM 0.610 + 0.069  —0.059 £+ 0.008  0.915 + 0.006 0.903 £ 0.007 0.852 + 0.041

In Table |4} we replicate the CelebA experiments from [Shrestha et al.|(2021). This entails training a ResNet18
on CelebA for the task of predicting the attribute “has blond hair” while protecting the attribute “is male”. Our
figures fall within the margin of error of those reported in [Shrestha et al.| (2021). Our extended results reveal
that while Spectral Decoupling (U-SD) may be effective in improving reweighted and worst-case accuracy,
Importance Weighted ERM (W-ERM) and Group Distributionally Robust Optimization (WA-GDRO) are
significantly more effective in reducing intersectional bias. These results mostly align with the general trends
we observe in Figure [3]

Table 5: [Liu et al| (2021)) Replication (CelebA-SL)

Model Inter. Bias Bias Amp Accuracy Reweighted Accuracy =~ Min Accuracy
U-ERM 1.107 £ 0.606 0.024 + 0.018 0.930 + 0.044 0.715 + 0.148 0.281 + 0.197
WA-GDRO | 0.666 +0.010  —0.049 +0.002  0.936 4 0.002 0.916 £ 0.001 0.857 £ 0.003
UWA-JTT 0.911 +£0.005  —0.041 £ 0.002  0.902 + 0.005 0.907 £ 0.001 0.842 £ 0.003
W-ERM 0.647 +0.101  —0.055 £+ 0.012  0.922 + 0.010 0.921 + 0.003 0.891 + 0.026

In Table |5, we replicate the CelebA experiments from |Liu et al.| (2021). This entails training a ResNet50
on CelebA for the task of predicting the attribute “has blond hair” while protecting the attribute “is male”.
Our figures fall within the margin of error of those reported in |[Liu et al|(2021)) and confirm their findings
that Just Train Twice (UWA-JTT) matches the Group DRO method and Importance Weighted ERM in
terms of reweighted and worst-case accuracy. However, our extended results reveal that JTT does not lead to
the same improvements in intersectional bias and bias amplification scores as Group DRO and Importance
Weighted ERM. Moreover, as seen in Figure |3 the impressive performance of the Just Train Twice method
in this experiment setting appears to be an outlier. As seen in Figure[7] even switching the protected and
target labels in this experiment setting results in the Just Train Twice method performing no better than the
baseline (U-ERM).

Table 6: [Wang et al.| (2020)) Replication (CelebA-ML)

Model mAP 1 Reweighted mAP 1 Inter. Bias | Bias Amp |
U-ERM 0.794 4+ 0.001 0.746 4+ 0.001 1.179 £ 0.037 0.007 4+ 0.002
Disc 0.792 4+ 0.001 0.739 + 0.002 1.176 £ 0.012 0.007 + 0.003
WA-GDRO 0.639 + 0.003 0.569 + 0.002 1.316 £ 0.018 0.039 + 0.003
Ind (w/o sum-prob) | 0.780 £ 0.001 0.760 + 0.000 0.854 + 0.021 —0.029 + 0.004
Ind (w/ sum-prob) 0.779 + 0.003 0.757 + 0.002 0.837 +0.026  —0.025 £+ 0.005
A-Cens 0.770 + 0.001 0.706 % 0.002 1.324 £+ 0.026 0.026 %+ 0.002
W-ERM 0.767 + 0.001 0.772 + 0.004 0.774 + 0.007  —0.061 £+ 0.003

In Table @, we replicate the CelebA experiments from Wang et al.|(2020). This entails training a ResNet50
on CelebA for the task of predicting 34 CelebA attributes while protecting the attribute “is male”. Our
figures fall within the margin of error of those reported in [Wang et al.| (2020) and confirm their findings
that their proposed Domain Independent method (Ind) significantly outperforms the Domain Discriminative,
Group DRO, and Adversarial Censoring methods. Moreover, their method outperforms them in all metrics
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including the intersectional bias score, which we added to their experiment. However, our extended results
also introduce Importance Weighted ERM as a baseline and reveal that the Domain Independent method does
not improve upon Importance Weighted ERM in any of the bias metrics. We do eventually find in Table
that the Domain Independent method is extremely effective when adapted with Knowledge Distillation and
Attribute Decomposition and applied to the label-scarce ImageNet dataset.

A.2 Additional Results from Section [4]

For our CelebA experiments depicted in Figures 2] and [3] we generate 54 different experiment settings
by sweeping over four collections of CelebA attributes, as described in Section [3] We describe these four
collections in full below:

1. Balanced: Wearing Lipstick, High Cheekbones, Heavy Makeup, Male, Attractive, Smiling, Mouth Slightly
Open. These protected attributes are, in order, the CelebA attributes with the most balanced labels (i.e.
close to 50-50)

2. Imbalanced: Wearing Hat, Double Chin, Blurry, Gray Hair, Bald, Sideburns, Mustache. These protected
attributes are, in order, the CelebA attributes with the most imbalanced labels (i.e. far from 50-50).

3. Inconsistent: Wavy Hair, Oval Face, Big Nose, Pale Skin, Big Lips, Straight Hair. These protected
attributes are the CelebA attributes designated as “inconsistently labeled” by Ramaswamy et al.| (2021)).

4. Protected: Pale Skin, Male, Narrow Eyes, Big Nose, Young, Straight Hair, and Attractive. These attributes
are selected for their associations with protected demographics.

Recall that Figures [2] and [3] aggregate results from the experiment settings generated by all four of these
attribute collections. In the following pages, for each attribute collection, we generate analogies of Figures
and [3] that only contain experiment settings generated from said collection. The variation between these
figures for different choices of attribute collections underscores our earlier discussion about the importance of
aggregating diverse experiment settings when evaluating bias mitigation methods. These collection-specific
figures may also be of use to readers interested in the behavior of bias mitigation experiments in specific
circumstances, e.g. when protected attribute are noisily labeled (see Figure @
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(iii) Bias mitigation results for the multi-label classification of celebrity attributes on CelebA.
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(iv) Bias mitigation results for the binary classification of hair color on CelebA.

Figure 6: Six experiment settings generated from the Inconsistent attribute collection: The
average test-split performance of ResNet50 models trained with bias mitigation on CelebA. Error bars denote
68% CI. In (iii-iv), metrics at 2 = 1 correspond to “protecting” the first attribute in the collection. Metrics
at © = 6 correspond to “protecting” the intersections of every attribute in the collection.
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(iii) Bias mitigation results for the multi-label classification of celebrity attributes on CelebA.
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(iv) Bias mitigation results for the binary classification of hair color on CelebA.

Figure 7: Seven experiment settings generated from the Protected attribute collection: The
average test-split performance of ResNet50 models trained with bias mitigation on CelebA. Error bars denote
68% CI. In (iii-iv), metrics at = 1 correspond to “protecting” the first attribute in the collection. Metrics
at © = 7 correspond to “protecting” the intersections of every attribute in the collection.
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(ii) Bias mitigation results for CelebA-SL.
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(iii) Bias mitigation results for the multi-label classification of celebrity attributes on CelebA.
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(iv) Bias mitigation results for the binary classification of hair color on CelebA.

Figure 8: Seven experiment settings generated from the Balanced attribute collection: The
average test-split performance of ResNet50 models trained with bias mitigation on CelebA. Error bars denote
68% CI. In (iii-iv), metrics at 2 = 1 correspond to “protecting” the first attribute in the collection. Metrics
at © = 7 correspond to “protecting” the intersections of every attribute in the collection.



Performance of Bias Mitigation Methods
on CelebA-ML For Imbalanced Protected Attributes
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(ii) Bias mitigation results for CelebA-SL.

Performance of Bias Mitigation Methods on CelebA (Multi-Label Classification) For Imbalanced Protected Attributes
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(iii) Bias mitigation results for the multi-label classification of celebrity attributes on CelebA.

Performance of Bias Mitigation Methods on CelebA (Blond Hair Clasification) For Imbalanced Protected Attributes

0.95
. 0.01
3
< 0.90 4 a
; £
%o P 0.00
2
—0.01 4
0.80 4
2 4 6
# prot. attributes
(a)
—— GDRO Independent-SP ---- U-ERM

3.0 1
2.5 1
& 2.0
2151
1.0 A
T T 05 L T T T
4 6 2 4 6
# prot. attributes # prot. attributes
(b) (c)
U-JTT -=-=-- U-SD —— Weighted ERM

(iv) Bias mitigation results for the binary classification of hair color on CelebA.

Figure 9: Seven experiment settings generated from the Imbalanced attribute collection: The
average test-split performance of ResNet50 models trained with bias mitigation on CelebA. Error bars denote

68% CI. In (iii-iv), metrics at = 1 correspond to

“protecting” the first attribute in the collection. Metrics

at © = 7 correspond to “protecting” the intersections of every attribute in the collection.
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Table 7: Pretraining significantly improves reweighted accuracy and reduces bias amplification. However,
pretraining increases intersectional bias as the metric is uninformative for underfitting models.

Reweighted Acc. Bias Amp. 100x Inter. Bias

W-ERM 47.67 £ 0.812 7.611+0.11 2.687£0.03
w/o pretrain| 14.88 £ 0.670 9.602 £1.54 2.167 +£0.04
Ind 47.24 +0.817 7.402+0.95 2.688+0.05

w/o pretrain| 17.36 £ 0.255 14.29 +£1.10 2.268 +0.01
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Figure 10: The average performance of ResNet50 models trained using bias mitigation methods on the CelebA
dataset for the CelebA-SL task (top) and CelebA-ML task (bottom). These figures represent 7 experiment
settings generated from the Protected attribute collection. Error bars denote 68% confidence intervals. All
results are on a test split.

A.3 ImageNet Pretraining Experiments

In Table [7] we depict the performance of bias mitigation methods on the training of ResNet50 models on
the ImageNet dataset. This experiment setting is identical to that plotted Table [2] except that we include
the performances of Importance Weighted ERM and the Domain Independent method if they had not
used pretraining (denoted as “w/o pretrain”). As expected, pretraining is necessary to achieve meaningful
performance using bias mitigation methods on a label-scarce dataset, improving reweighted accuracies from
14% — 48% and 17% — 47%. As such, we include a pretraining stage as part of the default experiment
procedures described in Section

A.4 Knowledge Distillation and Attribute Decomposition CelebA Experiments

In Figure we study the effect of modifying bias mitigation methods with Knowledge Distillation (KD)
and Attribute Decomposition (AD) before applying them to the CelebA experiment settings in Figure 7] As
expected, we observe that—in contrast to the trends observed in Table [B}—KD and AD appear to result in
less effective bias mitigation methods. This is because label scarcity is not an issue on CelebA, so reducing
the degrees of freedom of bias mitigation methods is counterproductive in this setting. Indeed, we see that
the counterproductive effects of KD and AD become statistically significant in intersectional settings (when
the # of protected attributes exceeds 3) where oversimplifying bias mitigation methods is most harmful. This
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highlights that techniques for bias mitigation that are most effective in label-scarce settings like ImageNet,
may not be most effective in label-plentiful settings like CelebA, and vise-versa.

24



B Appendix: Experiment Details

B.1 Computing Environment

Each experiment run, corresponding to the training of a single model for a single random seed, is trained
concurrently with two other runs on their own GPU type Tesla V100-SXM2-32GB-LS provisioned from a
commercial cloud service. The training process for three such concurrent runs takes anywhere from two GPU
hours up to twenty four GPU hours.

B.2 Dataset Information

Here, we detail the two main datasets that our experiments use. The first is CelebA (Liu et al., [2015)), a
dataset of celebrity facial pictures. CelebA labels these facial images with forty binary attributes such as
"Pale"/"'Not Pale" and "Male"/"Not Male"; these binary definitions and choices of default values originate
from the dataset itself and not the authors of this work. We have retained the dataset’s original terminology
for continuity with prior literature. The second is the ImageNet dataset, specifically the People subtree of the
ImageNet challenge (Deng et al., [2009). This is a multi-class classification task. We use protected attribute
labels provided by [Yang et al.| (2020) about the gender, skin color and age of each image’s photographed
individual. These attribute labels only cover around 15,000 of the 140,000 images we were able to download
from the ImageNet People subtree. Note that this People Subtree is not the usual ILSVRC subset of ImageNet
adopted by other computer vision literature. Accuracies on this dataset, e.g. in Table [2] may appear low but
are only due to the choice of dataset, and are in-line with previous works. For instance, Yang et al.| (2020)
obtains a top-1 (unweighted) accuracy of 56%, predicting from 143 classes on the People Subtree, whereas we
obtain a top-1 (unweighted) accuracy of 50%, predicting from 284 classes.

The following tables detail additional dataset and data augmentation information.

Training Split Size | Attribute-Labeled Training Size | Eval Size | Test Size
CelebA 162770 162770 19867 19962
ImageNet | 124693 5861 5327 5327

Normalization Optimal Data Augmentation

CelebA By mean [0.485, 0.456, 0.406] and std [0.229, | Random resized crop of (224, 224) from (256,
0.224, 0.225], center cropped and resized to | 256) and random horizontal flips
(224, 224)
ImageNet | By mean [0.485, 0.456, 0.406] and std [0.229, | Random resized crop of (224, 224) from (256,
0.224, 0.225], center cropped and resized to | 256) and random horizontal flips
(224, 224)

B.3 Experiment Hyperparameters

In this section, we detail the hyperparameters used in our experiments. All results provided are over three
random seeds. Unless otherwise-specified, these hyperparameters were selected by a grid search over the
hyperparameter candidate values listed in the below table.

Range
Learning Rate le-2, le-3, le-4, le-5
Batch Size 32, 128
Weight Decay le-1, 1e-4, 0
Dropout 0, 0.5
Group learning rates (WA-GDRO) | 1, 0.1, 0.01
Gradient penalty (IRM) 0.2,1,5
Groups sampled per batch (IRM) 1,4, 16
Initial Epochs (UWA-JTT) 1, 5,30
Importance weight (UWA-JTT) 1, 5, 20, 50
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Hyperparameters were selected from the above choices to optimize reweighted accuracy/mAP. We note
that there is an interesting relationship between hyperparameter tuning and the fairness of various learning
algorithms, but this is beyond the scope of this work and we defer interested readers to [Hooker| (2021)). Our
methodology is aimed at mitigating the influence of hyperparameters such that our empirical findings reflect
meaningful differences between methods rather than differences in hyperparameter tuning/specifications.

Table is an experiment run on the CelebA-SL task. All hyperparameters seen are chosen to match
Shrestha et al.| (2021) as closely as possible. As with the original paper, we use a Resnet-18 (He et al., |2016))
trained with SGD with momentum 0.9 and without data augmentation. The hyperparameters are listed
below.

Learning | Batch | Weight Dropout | Epochs | Custom Parameters
Rate Size Decay
U-ERM le-3 128 0 0 50 N/A
W-ERM le-5 128 le-1 0 50 N/A
WA-GDRO | 1le-5 128 le-1 0 50 Group learning rate of
0.01
IRM le-4 128 0 0 50 Gradient penalty of 1
U-SD le-4 128 le-5 0 50 Per class A = (10, 10),
~v = (0.44,0.25).

Table is an experiment run on the CelebA-SL task. All hyperparameters seen are chosen to match
Liu et al.| (2021) as closely as possible. As with the original paper, we use a Resnet-50 (He et al.; 2016)
trained without data augmentation, trained with SGD with momentum 0.9, and pretrained on ImageNet.
The hyperparameters are listed below.

Learning | Batch | Weight Dropout | Epochs | Custom Parameters

Rate Size Decay

U-ERM le-4 128 le-4 0 50 N/A

W-ERM le-4 128 le-4 0 50 N/A

WA-GDRO | 1le-5 128 le-1 0 50 Group learning rate of
0.01

UWA-JTT | le-5 128 le-1 0 50 Importance weight of
A = 50, using ERM
model trained for 1
epoch.

Table [6] is an experiment run on the CelebA-ML task. All hyperparameters seen are chosen to match [Wang
et al.| (2020]) as closely as possible. As with the original paper, we use a Resnet-50 (He et al, 2016 trained
with data augmentation and Adam, pretrained on ImageNet. The hyperparameters are listed below.

Learning | Batch | Weight Dropout | Epochs | Custom Parameters
Rate Size Decay
U-ERM le-4 128 0 0.5 50 N/A
W-ERM le-4 128 0 0.5 50 N/A
Ind le-4 128 0 0.5 50 N/A
Isrgiependent le-4 128 |0 0.5 50 N/A
Disc le-4 128 0 0.5 50 N/A
A-Cens le-4 128 0 0.5 50 Training ratio (adver-
sarial:main) 3:1, con-
fusion loss weight =
1.0
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The CelebA-ML task depicted in Figures [} [8l [0 and [7] are run with the below hyperparameters,
determined by grid search. We also use a Resnet-50 [He et al.| (2016 trained with data augmentation and
Adam and pretrained on ImageNet—the same settings as Wang et al.| (2020).

Learning | Batch | Weight Dropout | Epochs | Custom Parameters
Rate Size Decay
U-ERM le-4 32 0 0.5 30 N/A
W-ERM le-4 32 0 0.5 30 N/A
Ind le-4 32 0 0.5 30 N/A
WA-GDRO | le4 32 0 0.5 30 Group learning rate of
0.1
UWA-JTT | le-4 32 0 0.5 30 Importance  weight
A = 20, using ERM
model trained for 1
epoch

The CelebA-SL task depicted in Figures [6] [8] [9} and [7] are run with the below hyperparameters,
determined by grid search. We also use a Resnet-50 He et al.| (2016)) trained without data augmentation,
with SGD with momentum 0.9, and pretrained on ImageNet—the same settings as |[Liu et al.|(2021)).

Learning | Batch | Weight Dropout | Epochs | Custom Parameters
Rate Size Decay
U-ERM le-4 128 le-1 0 50 N/A
W-ERM le-5 128 le-1 0 50 N/A
Ind le-4 128 le-4 0 50 N/A
WA-GDRO le-4 128 le-1 0 50 Group learning rate of
0.01
UWA-JTT le-4 32 le-1 0 50 Importance  weight
A = 5, using ERM
model trained for 1
epoch
IRM le-4 32 le-1 0 50 Gradient penalty of 1
Uniform IRM | le-4 128 le-1 0 50 Gradient penalty of 1,
16 groups sampled per
batch
U-SD le-4 128 le-4 0 50 Per class A = (10, 10),
v = (0.44,2.5)

Tables and [7] are experiments run on the ImageNet dataset. Hyperparameters were chosen by grid
search. We use a Resnet-50 He et al.| (2016)) trained with SGD with momentum 0.9, with standard ImageNet
pretrained weights—mnote that the ImageNet subset used for pretraining does not intersect with the ImageNet
People Subtree we train onE] The hyperparameters are listed below.

1Further note that while we initialize our network with standard ImageNet pretrained weights (trained on a different subset of
ImageNet than we use), some of our experiments involve also pretraining on a subset of ImageNet that we do use (see Table [71)
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Learning | Batch | Weight Dropout | Epochs | Custom Parameters
Rate Size Decay
U-ERM le-4 64 le-4 0 100 N/A
W-ERM le-4 64 le-2 0 50 N/A
W-SqrtERM | le-4 64 le-2 0 50 N/A
gﬁg{ggRM le-d 64 le-2 0 50 Distill weight = 1.0
WA-GDRO | le4 64 le-2 0 50 Group learning rate of
0.01
UWA-JTT le-5 64 le-1 0 50 Importance weight of
A = 5, using ERM
model trained for 5
epoch.
Ind le-4 64 le-1 0 50 N/A
gﬁtﬂle 4 le-d 64 le-1 0 50 Distill weight = 1.0
U-SD le-5 64 le-1 0 50 Per class A =10, v =

0
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