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Abstract

Social and real-world considerations such as robustness, fairness, social welfare and multi-agent tradeoffs
have given rise to multi-distribution learning paradigms, such as collaborative [9], group distributionally
robust [50], and fair federated learning [39]. In each of these settings, a learner seeks to uniformly
minimize its expected loss over n predefined data distributions, while using as few samples as possible. In
this paper, we establish the optimal sample complexity of these learning paradigms and give algorithms
that meet this sample complexity. Importantly, our sample complexity bounds exceed that of learning
a single distribution by only an additive factor of n log(n)

ε2
. This improves upon the best known sample

complexity bounds for fair federated learning (by Mohri et al. [39]) and collaborative learning (by Nguyen
and Zakynthinou [42]) by multiplicative factors of n and log(n)

ε3
, respectively. We also provide the first

sample complexity bounds for the group DRO objective of Sagawa et al. [50]. To guarantee these optimal
sample complexity bounds, our algorithms learn to sample from data distributions on demand. Our
algorithm design and analysis are enabled by our extensions of online learning techniques for solving
stochastic zero-sum games. In particular, we contribute stochastic variants of no-regret dynamics that
can trade off between players’ differing sampling costs.

1 Introduction
Pervasive needs for robustness, fairness, and multi-agent collaboration in learning have given rise to multi-
distribution learning paradigms (e.g., [9, 50, 39, 18]). In these settings, we seek to learn a model that performs
well on any distribution in a predefined set of interest. For fairness considerations, these distributions
may represent heterogeneous populations of different protected or socioeconomic attributes; in robustness
applications, they may capture a learner’s uncertainty regarding the true underlying task; and in multi-agent
collaborative or federated applications, they may represent agent-specific learning tasks. In these applications,
the performance and optimality of a model is measured by its worst test-time performance on a distribution
in the set. We are concerned with this fundamental problem of designing sample-efficient multi-distribution
learning algorithms.

The sample complexity of multi-distribution learning differs from that of learning a single distribution
in several ways. On one hand, varying numbers of samples are required when learning tasks of varying
difficulty. On the other hand, similarity or overlap among learning tasks may obviate the need to sample
from some distributions. This makes the use of a fixed per-distribution sample budget highly inefficient and
suggests that optimal multi-distribution learning algorithms should sample on demand. That is, algorithms
should take additional samples whenever they need them and from whichever data distribution they want
them. On-demand sampling is especially appropriate when some population data is scarce (as in fairness
mechanisms in which samples are amended [46]); when the designer can actively perturb datasets towards
rare or atypical instances (such as in robustness applications [29, 59]); or when sample sets represent agents’
contributions to an interactive multi-agent system [39, 10].
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Problem Sample Complexity Thm Best Previous Result

Collab. Learning UB ε−2(log(|H|) + n log(n/δ)) [5.1] ε−5 log( 1
ε
) log(n/δ)(log(|H|) + n) [42]

Collab. Learning LB ε−2(log(|H|) + n log(n/δ)) [5.3] ε−1(log(|H|) + n log(n/δ)) [9]

GDRO/AFL UB ε−2(log(|H|) + n log(n/δ)) [5.1] ε−2(n log(|H|) + n log(n/δ)) [39]

GDRO/AFL UB ε−2(DH + n log(n/δ)) [6.1] N/A

(Training error convg.) ε−2(DH + n log(n/δ)) [6.2] ε−2n(log(n) +DH) (expected convergence only) [50]

Table 1: This table lists upper (UB) and lower bounds (LB) on the sample complexity of learning a model class
H on n distributions. For the collaborative learning and agnostic federated learning (AFL) settings, the sample
complexity upper bounds refer to the problem of learning a (potentially randomized) model whose expected loss
on each distribution is at most OPT + ε, where OPT is the best possible such guarantee. For the GDRO setting,
sample complexity refers to learning a deterministic model with expected losses of at most OPT+ ε, from a convex
compact model space H with a Bregman radius of DH. Sample complexity bounds for collaborative and agnostic
federated learning in existing works extend to VC dimension and Rademacher complexity. Our results also extend to
VC dimension under some assumptions.

Blum et al. [9] demonstrated the benefit of on-demand sampling in the collaborative learning setting, when
all data distributions are realizable with respect to the same target classifier. This line of work established that
learning n distributions with on-demand sampling requires a factor of Õ(log(n)) times the sample complexity
of learning a single realizable distribution [9, 13, 42], whereas relying on batched uniform convergence takes
Ω̃(n) times more samples than learning a single distribution [9]. However, beyond the realizable setting,
the best known multi-distribution learning results fall short of this promise: existing on-demand sample
complexity bounds for agnostic collaborative learning have highly suboptimal dependence on ε, requiring
Õ(log(n)/ε3) times the sample complexity of agnostically learning a single distribution [42]. On the other
hand, agnostic fair federated learning bounds [39] have been studied only for algorithms that sample in one
large batch and thus require Ω̃(n) times the sample complexity of a single learning task. Moreover, the
test-time performance of some key multi-distribution learning methods, such as group distributionally robust
optimization [50], have not been studied from a provable or mathematical perspective before.

In this paper, we give a general framework for obtaining optimal and on-demand sample complexity for
three multi-distribution learning settings. Table 1 summarizes our results. All three of these settings consider
a set D of n data distributions and a model class H, evaluating the performance of a model h by its worst-case
expected loss, maxD∈D RD(h). As a benchmark, they consider the worst-case expected loss of the best model,
i.e., OPT = minh∗∈H maxD∈D RD(h∗). Notably, all of our sample complexity upper bounds demonstrate
only an additive increase of ε−2n log(n/δ) over the sample complexity of a single learning task, compared to
the multiplicative factor increase required by existing works.

- Collaborative learning of Blum et al. [9]: For agnostic collaborative learning, our Theorem 5.1 gives a
randomized and a deterministic model that achieves performance guarantees of OPT+ ε and 2OPT + ε,
respectively. Our algorithms have an optimal sample complexity of O( 1

ε2 (log(|H|) + n log(n/δ))). This
improves upon the work of Nguyen and Zakynthinou [42] in two ways. First, it provides risk bounds of
OPT+ ε for randomized classifiers, where only 2OPT + ε was established previously. Second, it improves
the upper bound of Nguyen and Zakynthinou [42] by a multiplicative factor of log(n)/ε3. In Theorem 5.3,
we give a matching lower bound on this sample complexity, thereby establishing the optimality of our
algorithms.

- Group distributionally robust learning (group DRO) of Sagawa et al. [50]: For group DRO, we consider
a convex and compact model space H. Our Theorem 6.1 studies a model that achieves an OPT + ε
guarantee on the worst-case test-time performance of the model with an on-demand sample complexity of
O
(

1
ε2 (DH + n log(n/δ))

)
. Our results also imply a high-probability bound for the convergence of group
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DRO training error that improves upon the (expected) convergence guarantees of Sagawa et al. [50] by a
factor of n.

- Agnostic federated learning of [39]: For agnostic federated learning, we consider a finite class of hypotheses.
Our Theorems 5.1 and 6.1 show that on-demand sampling can accelerate the generalization of agnostic
federated learning by a factor of n compared to batch results established by Mohri et al. [39]. Our results
also imply matching high-probability bounds with respect to Mohri et al. [39] on the convergence of the
training error in the batched setting.

To achieve these results, we frame multi-distribution learning as a stochastic zero-sum game: a maximizing
player chooses a weight vector over data distributions D and a minimizing player chooses a weight vector over
hypotheses H. These two players require different numbers of datapoints in order to estimate their respective
payoff vectors. We therefore solve the game using no-regret dynamics, utilizing stochastic mirror descent to
optimally trade off the players’ asymmetric needs for datapoints. In Section 3, we give an overview of this
approach and its technical challenges and contributions. Our results also extend directly to settings with not
only multiple data distributions but also multiple loss functions.

1.1 Related Work
There are many lines of work that study multi-distribution learning but which have evolved independently in
separate communities.

Collaborative and agnostic federated learning. Blum, Haghtalab, Procaccia, and Qiao [9] posed the
first fully general description of multi-distribution learning, motivated by the application of collaborative
PAC learning. The field of collaborative learning is concerned with the learning of a shared machine learning
model by multiple stakeholders that each desire a model with low error on their own data distribution. The
line of work studies on-demand sample complexity bounds for the setting where stakeholders collect data so
as to minimize the error of the worst-off stakeholder [9, 42, 13, 11]. This setting, stated in its full generality,
yields the multi-distribution learning problem as presented in this paper. Blum et al. [9] established a log(n)
factor blowup for the realizable case. For the general agnostic setting the best existing sample complexity
requires a factor log(n)/ε3 blowup [42]. In comparison, our work establishes a tight additive increase in the
sample complexity (which is comparable to log(n) multiplicative factor blowup with no dependence on ε). A
related line of work concerns the strategic considerations of collaborative learning and seeks incentive-aware
mechanisms for collecting data in the collaborative learning setting [10].

The field of federated learning focuses on a related motivating application where the goal is to learn a
model from data dispersed across multiple devices but where querying data from each device is expensive [38].
The agnostic federated learning framework of Mohri, Sivek, and Suresh [39] poses (a variant of) the multi-
distribution learning objective as a target for federated learning algorithms, and studies it in the offline setting
with a data-dependent analysis. Their results involve a blowup by a factor n for the sample complexity.

Group distributionally robust optimization (Group DRO). Multi-distribution learning also arises in
distributionally robust optimization [8] under the name of Group DRO, a class of DRO problems where the
distributional uncertainty set is finite [24]. The group DRO literature is motivated by applications where
the distributions correspond to deployment domains or protected demographics that a machine learning
model should avoid spuriously linking to labels [24, 50, 51]. Although Group DRO—like collaborative
learning—is mathematically an instance of multi-distribution learning, prior work on Group DRO focuses on
the convergence of training error in offline settings, with a particular focus on deep learning applications. As
we discuss later, theoretical aspects of on-demand multi-distribution learning can translate into actionable
insights for Group DRO applications.

Multi-group fairness. Multi-distribution learning is also related to the fields of multi-group learning [49, 53]
and multi-group fairness [19, 27]. These works study offline learning settings with a single distribution D and
implicitly consider distribution Di to be the conditional distribution on a subset of the support representing
group i. In these settings, the learner does not have explicit access to oracles that sample from distributions
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D1, . . . , Dn and instead uses rejection sampling to collect data from D1, . . . , Dn. As a result, they experience
a sub-optimal sample complexity blowup by a factor n. This blowup may not be obvious upon first glance, as
these works provide theoretical guarantees for each group in terms of the number of datapoints from that
group. Multi-group learning [49, 53] considers a similar problem to multi-distribution learning; by assuming
that there exists a hypothesis that is simultaneously ε-optimal on every distribution (an assumption not
made in our setting) they compare their learned hypothesis against the best hypothesis for each individual
distribution.

Multi-source domain adaptation. Multi-source domain adaptation, or multi-task learning, is another
related line of work that is concerned with using data from multiple different training distributions to
learn some target distribution, under the assumption that the training and target distributions share
some task relatedness [7, 36]. Multi-distribution learning can be framed similarly as using a finite set of
training distributions to simultaneously learn the convex hull of the training distributions. Interestingly, the
requirement in the multi-distribution setting of learning the entire convex hull obviates the need for the
task-relatedness assumptions of multi-source learning.

Stochastic game equilibria. Our approach relates to a line of research on using online algorithms to
find min-max equilibria by playing no-regret algorithms against one another [48, 21, 45, 14, 15]. Online
mirror descent (OMD) is a well-studied family of methods that can find approximate minima of convex
functions, and also find approximate min-max equilibria of convex-concave games, with high probability,
using noisy first-order information [47, 40, 23, 6]. We bring these online learning tools to bear on the problem
of finding saddle points in robust optimization formulations. The primary technical difference between
multi-distribution learning and traditional saddle-point optimization problems is that we have sample access
to data distributions instead of noisy local gradients.

Other paradigms. Several other machine learning paradigms also consider learning from multiple distribu-
tions. Notably, distributed learning (e.g., [44, 12, 5, 16, 52]) and federated learning (e.g., [32, 31, 38]) consider
learning from data that is spread across multiple sources or devices. Classically, both of these settings have
focused on minimizing the training or testing error averaged over these devices. The literature in these fields
has primarily focused on methods for minimizing the average loss using communication-efficient, private,
and robust-to-dropout training methods. However, optimizing average performance produces models that
can significantly underperform on some data sources, especially when the data is heterogeneously spread
across the sources. In comparison, multi-distribution learning paradigms such as collaborative learning [9],
agnostic federated learning [39], and Group DRO [50] learn models that perform well across any one of the
data sources.

Subsequent work. Haghtalab et al. [22] formalized multicalibration as a type of multi-distribution
learning, building on the framework presented in this manuscript. Their work improves upon state-of-art
multicalibration algorithms by implementing multi-distribution learning game dynamics using online learning
algorithms that leverage the structure of calibration losses. Zhang et al. [61] extended the discussion on the
sample complexity of Group DRO to settings with data budgets. They also noted an erroneous bandit-to-
full-information reduction in an earlier version of this manuscript, which we corrected in a previous version
(arXiv V2) with a minor change that employs Exp3 [41] or ELP [1] in place of our earlier reduction. Awasthi
et al. [4] presented steps towards answering the sample complexity of multi-distribution learning with VC
classes. This open problem was recently settled up to log factors by Zhang et al. [62], Peng [43].

2 Preliminaries
Throughout this manuscript, we use the shorthands x(1:T ) := x(1), . . . , x(T ) and f(·, b) := a 7→ f(a, b). We
write ∆(A) to denote the set of probability distributions supported on a set A and ∆d to denote the
probability simplex in Rd−1. We use ∥·∥∗ to denote the dual of the norm ∥·∥ and ei ∈ Rn to denote the
ith standard basis vector. Given a data distribution D supported on the space of datapoints Z, hypothesis
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class H, and a loss function ℓ : H×Z → [0, 1], we denote the expected loss (risk) of a hypothesis h ∈ H by
RD,ℓ(h) := Ez∼D [ℓ(h, z)], writing RD(h) if ℓ is clear from context.

2.1 Multi-Distribution Learning
The goal of multi-distribution learning is finding a hypothesis that uniformly minimizes expected loss across
multiple data distributions and loss functions. Importantly, we make no assumptions on the relationships
between the data distributions; for example, we do not assume the existence of a hypothesis that is
simultaneously optimal for every distribution. Formally, given a set of data distributions D = {Di}ni=1, losses
L = {ℓj}mj=1, and a hypothesis class H, we say a hypothesis h is ε-optimal for the multi-distribution learning
problem (D,L,H) if

max
D∈D

max
ℓ∈L

RD,ℓ(h) ≤ OPT+ ε, where OPT := min
h∈H

max
D∈D

max
ℓ∈L

RD,ℓ(h). (1)

Throughout this manuscript, we will often assume we are working with smooth and convex loss functions.
Formally, we say a multi-distribution learning problem (D,L,H) has smooth convex losses if two conditions
are met. First, H is parameterized by a convex compact Euclidean parameter space Θ such that H = {hθ}θ∈Θ.
Second, for the same parameter space Θ, for every loss function ℓ ∈ L and datapoint z ∈ Z, the mapping
f : Θ → [0, 1] defined as f(θ) = ℓ(hθ, z) is convex and 1-smooth; i.e., ∥∇θf(θ)∥ ≤ 1 for all θ ∈ Θ. We remark
that the assumption of smooth convex losses is a weak assumption. In fact, we will observe that our results
on smooth convex losses easily extend to bounded non-smooth non-convex losses when the hypothesis class H
is finite or combinatorially bounded, such as when H has finite VC dimension or Littlestone dimension [33].

Sample complexity. We are interested in the design of multi-distribution learning algorithms that have
sample access to the distributions D1, . . . , Dn and only take a small number of samples from these distributions
overall. We formalize this access by defining a set of example oracles, EX(D1), . . . ,EX(Dn), where each
EX(Di) returns i.i.d. samples from Di. We can then define the sample complexity of a multi-distribution
learning algorithm by the cumulative number of calls it makes to these example oracles in order to find a
solution.

We note that a multi-distribution learning algorithm may make these example oracle calls in an adaptive
fashion; i.e., choosing which example oracle to call based on the datapoints it received from previous oracle
calls. As first noted by Blum et al. [9], this ability to query for samples on-demand is critical for achieving
efficient multi-distribution learning sample complexities. We also note that multi-distribution algorithms
can use a set of example oracles to sample from any mixture distribution q ∈ ∆D; e.g., by first sampling a
supporting distribution Di from the mixture distribution and then calling its example oracle EX(Di).

2.2 Instances of Multi-Distribution Learning
Multi-distribution learning unifies the problem formulations of collaborative learning [9], agnostic federated
learning [39], and group distributionally robust optimization (group DRO) [50]. These problems have each
spawned a line of highly influential works but were previously not recognized to be equivalent. We emphasize
our view that multi-distribution learning is a particularly useful level of generality at which to study these
problems, as it allows for their unified treatment both conceptually and algorithmically.

Collaborative learning. In the collaborative PAC learning model of Blum et al. [9], and its agnostic
extensions by Nguyen and Zakynthinou [42], the goal is to learn a hypothesis that guarantees small risk for
every distribution in a collection of distributions. These data distributions are usually interpreted as the
heterogeneous problem domains faced by multiple participants that are collaborating on data collection; the
goal of collaborative learning is to learn a machine learning model that all participants are satisfied with.

Collaborative learning is usually studied in a supervised learning setting where datapoints consist of a
feature-label pair, i.e., Z = X × Y, and where hypothesis classes H ⊂ YX are either finite or combinatorially
bounded. Importantly, loss functions are assumed to be bounded in [0, 1], but may be non-smooth and
non-convex. Formally, given a set of data distributions, D := {D1, . . . , Dn}, supported on X × Y, a loss
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function ℓ : YX × Z → [0, 1], and a hypothesis class H ⊂ YX , a collaborative learning instance, (H,D), is
formulated as the problem of finding a solution h ∈ YX such that

max
D∈D

RD(h) ≤ OPT+ ε, where OPT := min
h∈H

max
D∈D

RD(h). (2)

We say a solution h is proper if it is in class, i.e., h ∈ H, and randomized if h is a probability distribution
supported on the class, i.e., h ∈ ∆(H). In the latter case, we define the expected loss for a randomized
hypothesis as RD(h) := Ef∼h[RD(f)].

Multi-distribution learning with smooth convex losses and collaborative learning seem to differ significantly
in terms of their formally definition. However, we can reduce any collaborative learning problem to multi-
distribution learning with smooth convex loss functions—as long as we allow for improper or randomized
solutions to our collaborative learning problem. Allowing for improper or randomized solutions is not
unreasonable and is in fact necessary to achieve non-trivial sample complexities in collaborative learning [9].

The first step to reducing collaborative learning to multi-distribution learning is to relax the optimization
problem on the hypothesis class H onto the class of randomized hypotheses ∆(H).

Fact 2.1. Consider a collaborative learning problem (H,D). Define the relaxed loss function ℓ̃ : ∆(H) → [0, 1]

as ℓ̃(h, z) = Ef∼h [ℓ(f, z)]. The induced losses in the multi-distribution learning problem, (D,
{
ℓ̃
}
,∆(H)), are

smooth and convex, and any ε-optimal solution h ∈ ∆(H) is also an ε-optimal randomized solution to the
collaborative learning problem (H,D); i.e., it satisfies Equation 2.

This fact implies that multi-distribution learning can solve for deterministic but improper solutions to
collaborative learning problems. This is because we can always extract a deterministic solution from a
non-deterministic solution h ∈ ∆(H) by taking a majority vote, where we denote the majority vote hypothesis
as hMaj. The expected loss guarantee of this deterministic hypothesis is approximately bounded by that of
the randomized h. We state this formally below for the setting where H is a set of binary classifiers; that is,
where the label space is binary, Y = {0, 1}, and the loss function ℓ can be written as ℓ(h, (x, y)) = g(h(x), y)
for some choice of g : Y2 → [0, 1].

Fact 2.2. Consider a collaborative learning problem (H,D) on a set of binary classifiers. For any randomized
solution h ∈ ∆(H), define the deterministic hypothesis hMaj as hMaj(x) = 1[Prf∼h(f(x) = 1) > 1

2 ]. The
expected loss of hMaj is bounded by maxD∈D RD(hMaj) ≤ 2maxD∈D RD(h).

Group distributionally robust optimization. In the closely related setting of group distributionally
robust optimization (group DRO) of Sagawa et al. [50], the goal is similarly to learn some hypothesis that
guarantees small risk for every data distribution in a collection of distributions. In group DRO, the various
data distributions are usually interpreted to either represent heterogeneous user populations and protected
groups (for algorithmic fairness applications) or potential domains in which a model may be deployed (for
robustness applications).

In contrast to the collaborative learning problem, group DRO problems are typically studied in a convex
optimization setting where the hypothesis class is parameterized by some convex set and the loss function
is smooth and convex. That is, the usual definition of the group DRO problem setting coincides with the
definition of multi-distribution learning with a single smooth convex loss, i.e., |L| = 1. Unlike in collaborative
learning where we are interested in potentially improper or randomized solutions, the goal of group DRO is
to learn a proper model hθ ∈ H where

max
D∈D

RD(hθ) ≤ OPT+ ε, where OPT := min
θ∗∈Θ

max
D∈D

RD(hθ∗). (3)

It is the convexity of the group DRO problem setting that allows for the efficient learning of proper solutions
and avoid relaxation to randomized solutions.

Agnostic federated learning. The agnostic federated learning framework of Mohri et al. [39] also coincides
with multi-distribution learning with a single loss function. Like group distributionally robust optimization,
agnostic federated learning is usually studied in a convex optimization setting with convex parameter spaces
and smooth convex losses. As the general agnostic federated learning setting does not differ from group
distributionally robust optimization in its formulation, we provide an identical treatment of both settings in
Section 6.
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2.3 Technical Background
We will use tools and definitions from the literature on zero-sum games and no-regret learning throughout
the paper. This section provides a brief overview of these concepts.

Zero-sum games. A two-player zero-sum game is described by the tuple (A−,A+, ϕ) where A−,A+ are
convex compact action sets and ϕ : A− ×A+ → [0, 1] is the game payoff. The player who chooses from A− is
called the minimizing player and tries to minimize the game payoff ϕ, while the player who chooses from
A+ is called the maximizing player. A pair of actions (p, q) is called an ε-min-max equilibrium if neither
player can unilaterally improve their objective by more than ε; that is, ϕ(p, q)−minp∗∈A− ϕ(p∗, q) ≤ ε and
maxq∗∈A+

ϕ(p, q∗)− ϕ(p, q) ≤ ε. If ϕ is convex-concave—i.e., ϕ(·, q) is convex for every q ∈ A+ and ϕ(p, ·) is
concave for every p ∈ A−—then an ε-min-max equilibrium always exists for every ε ≥ 0. In the next section,
we will describe methods that find ε-min-max equilibria by playing online learning algorithms against each
other, a technique known as no-regret game dynamics [21].

No-regret learning. A no-regret (or online) learning algorithm QA maps from a sequence of costs c(1:t−1)

to an action a(t) ∈ A, where a(t) = QA(c
(1:t−1)). Notationally, we use the subscript A when writing an online

learning algorithm QA to denote the action set that the algorithm QA is defined to act on. Regret is defined
for a sequence of actions a(1), . . . , a(T ) ∈ A and costs c(1), . . . , c(T ) : A → [0, 1] as follows:

Reg(a(1:T ), c(1:T )) :=

T∑
t=1

c(t)(a(t))− min
a∗∈A

T∑
t=1

c(t)(a∗).

We say that a no-regret learning algorithm QA has a regret guarantee of γT (QA) if, for any sequence of linear
cost functions c(1:T ) of bounded norm, i.e., maxt∈[T ]

∥∥c(t)∥∥ ≤ 1, the algorithm QA chooses an action sequence
a(1:T ) with the regret bound Reg(a(1:T ), c(1:T )) ≤

√
γT (QA)T .

Examples of no-regret algorithms on probability simplexes. A well-studied online learning setting
is that in which the action set is a probability simplex,A = ∆n, and all costs are linear functions of bounded
norm. In this setting, we can interpret online learning algorithms as choosing mixed strategies a(t) ∈ ∆n

over a set of meta-actions, {1, . . . , n}, and the adversary as assigning a cost
{
c(t)(e1), . . . , c

(t)(en)
}

to each
meta-action, so that the algorithm incurs the cost Ei∼a(t)

[
c(t)(ei)

]
. An example of a no-regret algorithm in

this setting is Exponential Gradient Descent (Hedge), defined as

HedgeA(c
(1:t−1)) := ã(t)/

∥∥∥ã(t)∥∥∥
1

where ã ∈ Rn and ãi := exp

(
−η

t−1∑
τ=1

c(τ)(ei)

)
, (4)

where η ∈ (0, 1) is a learning rate. The following lemma states a classical result for exponential gradient
descent (Hedge), showing a regret guarantee of O (log(n)).

Lemma 2.1 ([55]). Let c(1:T ) be any linear cost sequence where maxt∈[T ]

∥∥c(t)∥∥∞ ≤ 1 and A = ∆n. When
η =

√
log(n/T ), the actions a(1:T ) chosen by Hedge satisfy Reg(a(1:T ), c(1:T )) ≤ 2

√
log(n)/T .

There also exist partial feedback no-regret algorithms—also known as semi-bandit algorithms—that only need
to observe the cost functions at each timestep for a few meta-actions (i.e., along a few basis vectors). We
can formalize these partial feedback (semi-bandit) algorithms as returning not only an action a(t) ∈ ∆n at
each timestep t but also returning the meta-actions I(t) ⊆ [n] whose costs it will observe. We can therefore,
somewhat unconventionally, write these algorithms as a mapping

{c(1)(ei)}i∈I(1) , . . . , {c(t−1)(ei)}i∈I(t−1) 7→ a(t), I(t).

The well-known partial feedback algorithm Exp3 chooses a(t) = Hedge(c̃(1:t−1)) and I(t) = {i(t)} at each
timestep, where i(t)

i.i.d.∼ a(t) and c̃(t)(a) = ai(t)c
(t)(ei(t))/(a

(t)

i(t)
+ λ) and where λ ≥ 0 is a stepsize [41]. An

alternatie partial feedback algorithm is ELP which, when given a partition P of the meta-actions [n] into k
subsets, guarantees I(t) ∈ P at each timestep. That is, it fixes a grouping of the meta-actions a priori and at
each timestep only observes the costs of meta-actions belonging to a particular group.
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Lemma 2.2 ([35]). Let c(1:T ) be arbitrary linear costs where maxt∈[T ]

∥∥c(t)∥∥∞ ≤ 1 and A = ∆n. For any δ ∈
(0, 1) and partition P of [n], the actions a(1:T ) chosen by ELP satisfy Reg(a(1:T ), c(1:T )) ≤ 2

√
|P | log(n/δ)/T

with probability 1 − δ. Moreover, only cost components from one element of P are observed per timestep:∣∣I(t)∣∣ ∈ P .

We emphasize that the results in this manuscript are stated to accommodate general choices of online
learning algorithms, with different guarantees and tradeoffs arising depending on which specific online learning
algorithms one employs.

3 Overview of Our Approach
In this section, we provide an overview of our general approach for studying the sample complexity of
multi-distribution learning. Our approach consists of two steps: (1) reducing multi-distribution learning
to the problem of finding the equilibrium of a convex-concave zero-sum game, and (2) implementing game
dynamics to efficiently find an equilibrium using only stochastic feedback.

3.1 Multi-Distribution Learning as a Zero-Sum Game
The multi-distribution learning problem corresponds to a zero-sum game with a minimizing player having
action set H, a maximizing player having action set D × L, and a payoff function ϕ(h, (D, ℓ)) = RD,ℓ(h).
Intuitively, the minimizing player can be interpreted as a learner who proposes candidate solutions while the
maximizing player can be interpreted as an auditor who tries to pick a data distribution and loss function for
which the learner’s hypothesis performs poorly. It is not hard to see that any ε-min-max equilibrium (h,D)
of this game corresponds to a 2ε-optimal solution.

Fact 3.1. Given a multi-distribution learning problem, (D,L,H), define the zero-sum game (A−,A+, ϕ)
where A− = H, A+ = D × L, and ϕ(p, q) = Rq(p). In any ε-min-max equilibrium (p, q), p is a 2ε-optimal
solution.

Proof. If (p, q) is an ε-min-max equilibria, the following holds by definition

Rq(p) ≤ min
h∗∈H

Rq(h
∗) + ε and Rq(p) ≥ max

D∗∈D,ℓ∗∈L
RD∗,ℓ∗(p)− ε.

Rearranging gives maxD∗∈D,ℓ∗∈L RD∗,ℓ∗(p) ≤ minh∗∈H Rq(h
∗) + 2ε ≤ OPT+ 2ε.

A multi-distribution learning problem (D,L,H) with convex losses can similarly be written as a convex-
concave zero-sum game where a minimizing player chooses from the actions Θ, a maximizing player chooses
from the actions D × L, and the payoff function is defined as ϕ(p, q) = Rq(hp). As we previously noted, as
the payoff function is convex-concave, a min-max equilibrium of this game must exist.

Many tools have been developed for efficiently finding the min-max equilibria of convex-concave zero-sum
games. The connection between multi-distribution learning and zero-sum games allows us to draw on these
tools to derive efficient learning algorithms.

Unknown payoff functions. The main challenge we will encounter is that of efficiently estimating the
payoff function of the multi-distribution learning game, given that evaluating the function ϕ(p, q) = Rq(hp)
requires computing expectations for an unknown data distribution. Typically, to compute the min-max
equilibrium of a convex-concave game, one needs a first-order approximation for the payoff function ϕ at
various strategy profiles—that is, we require the gradients ∇pϕ(p, q) and ∇qϕ(p, q) for various choices of
actions p ∈ A− and q ∈ A+. We will achieve this by designing noisy first-order oracles that, when queried
with a strategy profile (p, q), return unbiased estimates of the gradient ∇pϕ(p, q) or ∇qϕ(p, q). To control the
variance of these oracles, we will also ask that their estimates be bounded in norm, as we will formalize in the
sequel. Behind the scenes, we will implement these first-order approximations by querying example oracles.

A complication to implementing these noisy first-order oracles efficiently is that payoff estimation is more
costly for the maximizing player than the minimizing player. Indeed, consider a strategy profile (p, q) in
the multi-distribution learning game. Obtaining an unbiased bounded estimate of the minimizing player
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(learner)’s payoff gradient requires only drawing a single datapoint from the mixture distribution specified
by the other player (the auditor), since the learner only needs a counterfactual estimate of how well each
hypothesis would have performed on the mixture. However, obtaining an unbiased bounded estimate of the
maximizing player (the auditor)’s payoff gradient requires drawing n datapoints, since the auditor needs
a counterfactual estimate of how well the minimizing player’s hypothesis would have performed on each
potential data distribution D1, . . . , Dn. This intuitive arugment is formalized as follows.

Fact 3.2. Consider a multi-distribution learning problem (D,L,H) with 1-smooth losses and a strategy profile
hθ ∈ H and q ∈ ∆(D × L). The gradient vector ∇θℓ(hθ, z), where z

i.i.d.∼ D and (D, ℓ)
i.i.d.∼ q, is an unbiased

bounded estimate of the first-order information ∇θRq(hθ); i.e., Ez∼D,(D,ℓ)∼q [∇θℓ(hθ, z)] = ∇θRq(hθ) and
∥∇θℓ(hθ, z)∥ ≤ 1. Similarly, the vector [1 − ℓj(hθ, zi)]i∈[n],j∈[m] where zi

i.i.d.∼ Di is an unbiased bounded
estimate of the first-order information vector 1−∇qRq(hθ).

3.2 Equilibrium Computation in Stochastic Convex-Concave Games

Algorithm 1 Finding Equilibria in Convex-Concave Games with Asymmetric Costs.
Input: Action sets A−,A+, steps T , first-order oracles g-, g+, and online learning algorithms QA− ,QA+

;
for t = 1, 2, . . . , T do

Let p(t) = QA−

({
p 7→

〈
g-(p

(τ), q(τ)), p
〉}

τ∈[t−1]

)
;

Let q(t) = QA+

({
q 7→

〈
g+(p

(τ), q(τ)), q
〉}

τ∈[t−1]

)
;

end for
Return p = 1

T

∑T
t=1 p

(t) and q = 1
T

∑T
t=1 q

(t);

We now describe an online learning framework for finding equilibria in stochastic games using game
dynamics. We will later see this framework, which is described by Algorithm 1, easily accommodates the
asymmetric costs of estimating each player’s payoff gradients. Lemma 3.1 outlines a guarantee of returning
an approximate min-max equilibrium with high probability. We note that the guarantee of Lemma 3.1 is
stated in terms of the regret bounds γT (QA−) and γT (QA+

) of the online learning algorithms that we plug
into Algorithm 1. This means that choosing different online learning algorithms to be QA− and QA+

will
yield different guarantees.

Lemma 3.1. Consider a convex-concave zero-sum game (A−,A+, ϕ) with an L-smooth payoff ϕ. Assume
that

1. g- is a noisy first-order oracle that returns unbiased, bounded, and independent estimates of ∇pϕ(p, q).
That is, for all p ∈ A− and q ∈ A+, we have ∥g-(p, q)∥ ≤ L with probability one and E [g-(p, q)] =
∇pϕ(p, q).

2. g+ is a noisy first-order oracle that returns unbiased, bounded, and independent estimates of −∇qϕ(p, q).

3. The action sets A− and A+ have a diameters of at most R in the dual norm ∥·∥∗, i.e. maxp,p′∈A− ∥p− p′∥∗ ≤
R and maxq,q′∈A+

∥q − q′∥∗ ≤ R.

Then Algorithm 1 returns an ε-min-max equilibrium with probability 1− δ if

T ≥4L2

ε2
(
32R2 log(2/δ) + 25γT (QA−) + 25γT (QA+

)
)
. (5)

Informally, we can interpret the regret bound γT (QA−) as the difficulty of making rational choices for the
minimizing player and γT (QA+

) as the difficulty of making rational choices for the maximizing player. This
lemma then says that the number of iterations required to find an equilibrium depends on the additive
combination of the complexity seen by each player.

Before we proceed to a proof of this lemma, we recall some standard results on game dynamics and online
learning. First, we recall that no-regret dynamics efficiently learns equilibria in convex-concave games [21].
This fact implies that, in order to learn the equilibria of our multi-distribution learning game, it suffices to
design suitable no-regret algorithms.
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Fact 3.3. Let (A−,A+, ϕ) be a convex-concave zero-sum game. For any actions p(1:T ) ∈ A− and q(1:T ) ∈ A+

with regret Reg
(
p(1:T ),

{
ϕ(·, q(t))

}
t∈[T ]

)
≤ Tε and Reg

(
q(1:T ),

{
−ϕ(p(t), ·)

}
t∈[T ]

)
≤ Tε, the average actions

1
T

∑T
t=1 p

(t) and 1
T

∑T
t=1 q

(t) form a 2ε-min-max equilibrium.

Proof. By convexity, p := 1
T

∑T
t=1 p

(t) ∈ A− and q := 1
T

∑T
t=1 q

(t) ∈ A+. Since ϕ is concave in its second
argument, we can apply Jensen’s inequality to the regret bound of the minimizing player to get

Reg ({p}, {ϕ(·, q)}) = ϕ(p, q)− min
p∗∈A−

ϕ(p∗, q) ≤ 1

T

T∑
t=1

ϕ(p, q(t))− min
p∗∈A−

ϕ(p∗, q) ≤ ε.

Since ϕ is convex in its first argument, we can again apply Jensen’s inequality, this time to the regret bound
of the maximizing player, to get

Reg ({q}, {−ϕ(p, ·)}) = max
q∗∈A+

ϕ(p, q∗)− ϕ(p, q) ≤ max
q∗∈A+

ϕ(p, q∗)− 1

T

T∑
t=1

ϕ(p(t), q) ≤ ε.

Summing these inequalities yields that maxq∗∈A+
ϕ(p, q∗)−minp∗∈A− ϕ(p∗, q) ≤ 2ε.

Next, we recall that, in a no-regret learning problem with linear costs c(1:T ), a player can run any online
learning algorithm directly on independent, unbiased, bounded estimates ĉ(1:T ) of its costs c(1:T ) and expect
only a constant factor increase in its worst-case regret bound. This fact, which is classical in both optimization
theory [40, 28] and online learning theory [21], follows by a standard martingale argument. That no-regret
learning algorithms generalize well on stochastic costs will mean that we can efficiently implement no-regret
dynamics on stochastic games using noisy payoff observations that need only be unbiased and bounded.
Importantly, this means we do not need to obtain ε-accurate estimates of each players’ payoff at each iteration,
which would make no-regret dynamics prohibitively expensive in terms of sample complexity.

In the sequel, given a linear cost function c : A → R, we will abuse notation and use c to also denote the
vector such that c(a) = ⟨c, a⟩ for all a ∈ A. We will also use ∥c∥ to denote the norm of the vector c.

Fact 3.4. Let ĉ(1:T ) be independent, unbiased estimates of a set of linear costs c(1:T ), where
∥∥c(t)∥∥ ≤ L and∥∥ĉ(t)∥∥ ≤ L at all steps t ∈ [T ]. Assume an action diameter of R, i.e. maxa,a′∈A ∥a− a′∥∗ ≤ R. The actions

a(t) = QA(ĉ
(1:t−1)) chosen by applying an online learning algorithm QA to the estimated costs ĉ(1:T ) satisfies

the following generalization bound with probability 1− δ:

Reg(a(1:T ), c(1:T ))− Reg(a(1:T ), ĉ(1:T )) ≤ 4L
√
T
(
R
√

2 log(1/δ) +
√
γT (QA)

)
. (6)

Proof. We first upper bound the generalization error by the regret of actions a(1:T ) on the cost differences{
c(t) − c̃(t)

}
. Since maxa∗∈A

∑T
t=1

〈
c(t), a∗

〉
−maxa∗∈A

∑T
t=1

〈
ĉ(t), a∗

〉
≤ maxa∗∈A

∑T
t=1

〈
c(t) − ĉ(t), a∗

〉
, we

can bound generalization error ∆ by

∆ := Reg(a(1:T ), c(1:T ))− Reg(a(1:T ), ĉ(1:T )) ≤ Reg(a(1:T ), c(1:T ) − ĉ(1:T )).

The remainder of the proof is dedicated to bounding this regret term, which we can write explicitly as

Reg(a(1:T ), c(1:T ) − ĉ(1:T )) = max
a∗∈A

T∑
t=1

〈
a(t) − a∗, c(t) − ĉ(t)

〉
.

We will ultimately control this regret term with a martingale argument, appealing to the fact that at each
timestep the noisy costs we observe are unbiased even conditioned on previous cost observations. However,
we first need to control the variational term a∗, which we will do with a standard approach of introducing
a shadow term ε(t) = QA({c(τ) − ĉ(τ)}τ∈[t−1]). That is, ε(1:T ) is the result of (hypothetically) running the
online learning algorithm QA on the cost sequences {c(τ) − ĉ(τ)}. Adding and subtracting the shadow terms
ε(1:T ) from the inner product,

max
a∗∈A

T∑
t=1

〈
a(t) − a∗, c(t) − ĉ(t)

〉
= max

a∗∈A

T∑
t=1

〈
a(t) − ε(t) + ε(t) − a∗, c(t) − ĉ(t)

〉
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=

T∑
t=1

〈
a(t) − ε(t), c(t) − ĉ(t)

〉
+ max

a∗∈A

T∑
t=1

〈
ε(t) − a∗, c(t) − ĉ(t)

〉
.

Since we constructed ε(1:T ) with our online learning algorithm QA, we obtain a regret guarantee for the
action sequence ε(1:T ) on the cost sequence

{
c(t) − ĉ(t)

}
, which yields

max
a∗∈A

T∑
t=1

〈
ε(t) − a∗, c(t) − ĉ(t)

〉
∈ 4L

√
γT (QA)T . (7)

The term 4L appears in this bound since c(t)(a)− ĉ(t)(a) ∈ [−2L, 2L] must be normalized to [0, 1].
It remains to bound

∑T
t=1

〈
a(t) − ε(t), c(t) − ĉ(t)

〉
. This expression is a martingale because, for each

summand
〈
a(t) − ε(t), c(t) − ĉ(t)

〉
, the left-hand side a(t) − ε(t) is conditionally (on previous summands)

independent of c(t) − ĉ(t). Formally, we define the filtration {F (t)}Tt=0 as the sigma algebra generated by
{ĉ(t)}Tt=1. By construction, we know that (a(t) − ε(t)) is F (t−1)-measurable and thus

〈
a(t) − ε(t), c(t) − ĉ(t)

〉
is F (t)-measurable. Since ĉ(t) is unbiased, we also have that E

[〈
a(t) − ε(t), c(t) − ĉ(t)

〉 ∣∣F (t−1)
]
= 0. Finally,

we can observe that the difference sequence of our martingale can be bounded with Holder’s inequality as∣∣∣〈a(t) − ε(t), c(t) − ĉ(t)
〉∣∣∣ ≤ ∥∥∥a(t) − ε(t)

∥∥∥
∗

∥∥∥c(t) − ĉ(t)
∥∥∥ ≤ 4RL.

By the Azuma-Hoeffding inequality, we can thus bound, for any ε > 0,

Pr

(
T∑

t=1

〈
a(t) − ε(t), c(t) − ĉ(t)

〉
≥ ε

)
≤ exp

(
− ε2

32TR2L2

)
.

We can rewrite this as saying, with probability 1− δ, that
∑T

t=1

〈
a(t) − ε(t), c(t) − ĉ(t)

〉
≤ 4RL

√
2T log(1/δ).

In combination with Equation 7, this inequality yields the desired bound on ∆.

We intend to apply online learning algorithms to our convex-concave games, where the payoff function
is not necessarily linear. To overcome the fact that the concentration result in Fact 3.4 is specific to linear
costs, we now turn to showing that one can linearize any online learning problem with convex costs. That
is, we can reduce online learning on differentiable convex costs to online learning on linear costs, allowing
us to apply Fact 3.4. Specifically, we will use the concept of variational error, which is usually defined as
VErr(a(1:T ), c(1:T )) := Reg(a(1:T ), c̃(1:T )) where c̃(t)(a) =

〈
a,∇c(t)(a(t))

〉
. We now formalize the fact that

variational error yields an upper bound on regret: VErr(a(1:T ), c(1:T )) ≥ Reg(a(1:T ), c(1:T )).

Fact 3.5. Let c(1:T ) : A → R be convex functions on a convex compact domain A and let ∂c(t)(a(t)) be a
partial subgradient of c(t) at a(t). For any sequence a(1:T ) ∈ A,

Reg(a(1:T ), c(1:T )) :=

T∑
t=1

c(t)(a(t))− min
a∗∈A

T∑
t=1

c(t)(a∗) ≤ VErr(a(1:T ), c(1:T )) := max
a∗∈A

T∑
t=1

〈
∂c(t)(a(t)), a(t) − a∗

〉
.

Proof. By the convexity of ϕ,
∑T

t=1

〈
∂c(t)(a(t)), a(t) − a∗

〉
≥
∑T

t=1 c
(t)(a(t))−c(t)(a∗) for any fixed a∗ ∈ A.

We now turn to proving Lemma 3.1.

Proof of Lemma 3.1. Let ĉ-
(τ)(p) =

〈
g-(p

(τ), q(τ)), p
〉

and ĉ+
(τ)(q) =

〈
g+(p

(τ), q(τ)), q
〉

denote the cost func-
tions that the online learning algorithms QA− and QA+

are given in Algorithm 1. We first recall that the
bounds on the regret for QA− and QA+

yield the empirical regret bounds

Reg
(
p(1:T ), ĉ-

(1:T )
)
≤ L

√
γT (QA−)T , Reg

(
q(1:T ), ĉ+

(1:T )
)
≤ L

√
γT (QA+)T ,

as ĉ-(1:T ) and ĉ+
(1:T ) are linear cost functions with a bounded norm of at most L. By Fact 3.4, with probability

1− 2δ, we can bound the generalization error with the true cost functions c-
(τ)(p) =

〈
∇p(τ)ϕ(p(τ), q(τ)), p

〉
and c+

(τ)(q) = −
〈
∇q(τ)ϕ(p(τ), q(τ)), q

〉
by

Reg
(
p(1:T ), ĉ-

(1:T )
)
− Reg

(
p(1:T ), c-

(1:T )
)
≤ 4L

√
T
(
R
√
2 log(1/δ) +

√
γT (QA−)

)
,
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Reg
(
q(1:T ), ĉ+

(1:T )
)
− Reg

(
q(1:T ), c+

(1:T )
)
≤ 4L

√
T
(
R
√
2 log(1/δ) +

√
γT (QA+

)
)
.

Next, we observe that the costs c- and c+ are constructed so that regret on these costs coincides with
variational error on ϕ; i.e., Reg

(
p(1:T ), c-

(1:T )
)
= VErr(p(1:T ), {ϕ(·, q(t))}t∈[T ]) and Reg

(
q(1:T ), c+

(1:T )
)
=

VErr(q(1:T ), {−ϕ(p(t), ·)}t∈[T ]). Our empirical regret and generalization error bounds therefore imply

VErr(p(1:T ), {ϕ(·, q(t))}t∈[T ]) ≤ L
√
T
(
4R
√

2 log(1/δ) + 5
√

γT (QA−)
)

VErr(q(1:T ), {−ϕ(p(t), ·)}t∈[T ]) ≤ L
√
T
(
4R
√

2 log(1/δ) + 5
√
γT (QA+

)
)
.

For the stated choice of T , VErr(p(1:T ), {ϕ(·, q(t))}t∈[T ]) ≤ Tε and VErr(q(1:T ), {−ϕ(p(t), ·)}t∈[T ]) ≤ Tε with
probability at least 1−2δ. By Fact 3.5, Reg(p(1:T ), {ϕ(·, q(t))}t∈[T ]) ≤ Tε and Reg(q(1:T ), {−ϕ(p(t), ·)}t∈[T ]) ≤
Tε. Finally, by Fact 3.3, we have that (p, q) is an 2ε-min-max equilibrium with probability at least 1− 2δ.

4 Multi-Distribution Learning
In this section, we present Algorithm 2, a general recipe for multi-distribution learning. Algorithm 2 is a
general framework into which one can plug any choice of online learning algorithm to obtain a variety of
multi-distribution learning guarantees. The algorithm, which implements a form of stochastic game dynamics,
uses the tools we outlined in Section 3 to reduce multi-distribution learning to the problem of solving a
convex-concave game, and we then employ online learning algorithms to solve the game. In Theorem 4.1,
we present one example of the multi-distribution learning guarantees that Algorithm 3 can provide for any
online-learnable hypothesis class H.

Algorithm 2 General Recipe for Multi-Distribution Learning.
Input: Hypothesis class H with parameter space Θ, example oracles EX(D1), . . . ,EX(Dn), iterations T ,
online learning algorithm QΘ and a partial feedback online learning algorithm Q∆n×m

;
Initialize: θ(1) = QΘ(∅) and w(1), I(1) = Q∆n×m

(∅);
for t = 2, . . . , T do

Sample (i, j) ∼ w(t) and a datapoint z(t−1) i.i.d.∼ EX(Di);
Update the learner’s action θ(t) = QΘ({θ 7→

〈
∇θℓj(hθ, z

(τ)), θ
〉
}τ∈[t−1]);

For all (i, j) ∈ I(t−1), sample a datapoint zi
(t−1) i.i.d.∼ EX(Di) for every unique i;

Update the auditor’s action w(t), I(t) = Q∆n×m
({w 7→ 1−

∑n
i=1

∑m
j=1 wijℓj(hθ(τ) , zi

(τ))}τ∈[t−1]);
end for
Return: hθ where θ = 1

T

∑T
t=1 θ

(t);

Theorem 4.1. Consider a multi-distribution learning problem (D,L,H) with convex and 1-smooth losses
and a parameter space Θ of diameter R: maxθ,θ′∈Θ ∥θ − θ′∥∗ ≤ R. Let Q∆n×m

be a high-probability [41]
variant of the ELP algorithm [35] implemented on the partition P = [{(i, j)}j∈m]i∈n. For any choice of online
learning algorithm QΘ, with probability 1− δ, Algorithm 2 returns an ε-optimal solution hθ ∈ H where

ε ∈ O
(√

T−1 (γT (QΘ) + n log(mn/δ) +R log(1/δ))
)
.

The sample complexity of the algorithm is 2T .

Proof. Algorithm 2 implements Algorithm 1 on the convex-concave game (Θ,∆(D × L), ϕ), where the payoff
function ϕ is 1-smooth and defined as ϕ(θ, (D, ℓ)) = RD,ℓ(hθ).

We now turn to verifying that the conditions of Lemma 3.1 are satisfied. Since we assume that all losses
are 1-smooth in some norm ∥·∥, the learner’s payoff gradient ∇pϕ(p, q) is always bounded by 1 in the same
norm, while we assume the the learner’s action set diameter is at most R as measured by the dual norm ∥·∥∗.
By linearity of expectation, we also have that the auditor’s payoff gradient ∇qϕ(p, q) is always bounded by 1
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in the infinity norm, while the auditor’s action set diameter—a probability simplex—is at most 1 as measured
by the 1-norm. By Fact 3.2, the gradient estimators used in Algorithm 1, i.e. θ 7→

〈
∇θℓj(hθ, z

(τ)), θ
〉

and
w 7→ 1−

∑n
i=1

∑m
j=1 wijℓj(hθ(τ) , zi

(τ)), are unbiased, i.i.d., and 1-bounded estimates of the payoff gradients
∇θϕ(θ, w

(τ)) and ∇wϕ(θ
(τ), w) respectively. Thus, all conditions of Lemma 3.1 are satisfied.

We therefore know that (hθ,
1
T

∑T
t=1 w

(t)) is an ε-equilibrium with probability 1− δ if

T ≥ 128

ε2
(
R2 log(2/δ) + γT (QΘ) + γT (Q∆nm)

)
.

Recalling that the regret bound of the ELP algorithm is γT (Q′
∆nm

) ∈ O(n log(nm/δ)) (Lemma 2.2), it suffices
if T ≥ C

ε2

(
R2 log(2/δ) + γT (QΘ) + n log(mn/δ))

)
for some universal constant C. By Fact 3.1, it thus follows

that h := 1
T

∑T
t=1 h

(t) is a 2ε-optimal solution with probability 1− 2δ.
We now resolve the sample complexity of our instantiation of Algorithm 2. At every timestep, the

learner draws one datapoint z(t). The number of datapoints that the auditor draws in any given iteration
is the number of unique values of i in the set

{
(i, j) ∈ I(t−1)

}
. Concretely, recall that I(t−1) denotes which

cost components that the partial feedback algorithm Q∆n×m
chooses to observe from step t− 1, where an

entry (i, j) ∈ I(t−1) indicates that the auditor wishes to estimate the (in hindsight) outcome of auditing the
learner on the data distribution Di and loss function ℓj . We implement the ELP algorithm on the partition
P = [{(1, 1), . . . , (1,m)} , . . . , {(n, 1), . . . , (n,m)}], where all elements of a given group I ∈ P correspond to the
same data distribution Di but different choices of loss functions ℓj , meaning that Unique({i | (i, j) ∈ I}) = 1.
Since ELP guarantees that I(t−1) ∈ P , we can conclude the auditor only observes one datapoint per iteration.
The total sample complexity of the algorithm is therefore 2T .

One interpretation of Theorem 4.1 is that the worst-case sample complexity of multi-distribution learning
is not significantly larger than the worst-case sample complexity of learning a single data distribution with an
online-to-batch reduction. More specifically, handling multiple data distributions and loss functions only adds
an additive factor to one’s sample complexity. It may seem surprising that our sample complexity bound for
multi-distribution learning—a stochastic setting—is characterized by complexity of online decision-making—
an adversarial setting. However, multi-distribution learning is inherently an online decision-making problem,
as it requires one to strategize adaptively regarding the choice of data distribution to collect additional
samples from. This is in contrast to the usual single-distribution learning setting, where there is no explicit
decision-making involved.

5 Collaborative Learning
In this section, we present our main result on collaborative learning: a tight bound on the sample complexity
of collaborative learning in agnostic settings. In particular, we show that the collaborative learning of a
finite hypothesis class H on n data distributions requires Θ( log(|H|)+n log(n/δ)

ε2 ) samples. This means that,
when characterizing hypothesis class complexity by log(|H|), the worst-case sample complexity of learning n
distributions is not significantly larger than the worst-case sample complexity of learning one data distribution.
Specifically, it requires at most a constant factor or an additive O(n log(n/δ)/ε2) factor additional samples.

5.1 Sample Complexity Upper Bound
Theorem 5.1 states our sample complexity upper bound for agnostic collaborative learning. It is a direct
implication of the sample complexity of multi-distribution learning because, as we noted previously (Fact 2.1),
one can easily reduce agnostic collaborative learning to multi-distribution learning. Theorem 5.1 improves
over the best-known sample complexity for agnostic collaborative learning by Nguyen and Zakynthinou [42]
in two ways, giving an OPT + ε bound for randomized classifiers instead of their 2OPT + ε bound, and
improving their sample complexity of O

(
1
ε5

(
log(n) log(|H|) log

(
1
ε

)
+ n log

(
n
δ

)))
by a multiplicative factor

of 1
ε3 log (n) log

(
1
ε

)
.

Theorem 5.1. Given a set of data distributions D = {D1, . . . , Dn}, a hypothesis class H ∈ YX , and a
[0, 1]-bounded loss ℓ, consider the collaborative learning problem (H,D). Consider the output h ∈ ∆(H) of
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applying Theorem 4.1’s algorithm to the multi-distribution learning problem (D, {ℓ} ,∆(H)) where the online
learning algorithm Q∆(H) is Hedge. With probability 1− δ, h is an ε-optimal solution (see (2)) to (H,D) and
the sample complexity is O

(
ε−2 (log(|H|) + n log(n/δ))

)
.

Proof. The reduction of collaborative learning to multi-distribution learning (Fact 2.1) implies that any
ε-optimal solution to the multi-distribution learning problem (D, {ℓ} ,∆(H)) is an ε-optimal solution to the
collaborative learning problem (H,D). Fact 2.1 also establishes that (D, {ℓ} ,∆(H)) has convex and 1-smooth
losses, where smoothness is measured in the infinity norm. Since ∆(H) is a probability simplex, we also have
that its diameter is at most 2 in the 1-norm. The guarantees of Theorem 4.1 thus hold in our setting.

Since we choose to instantiate the online learning algorithm Q∆(H) used in Algorithm 2 with Hedge, we
recall that Hedge provides the regret guarantee (Lemma 2.1) of γT (Q∆(H)) ∈ O(log(|H|)). Thus, we can
write the statement of Theorem 4.1 as guaranteeing that Algorithm 2 takes at most 2T datapoints in total
and that, with probability 1 − δ, the output h of Algorithm 2 is an ε-optimal solution to (D, {ℓ} ,∆(H)),
where ε ∈ O

(√
T−1 (log(|H|) + n log(n/δ))

)
.

For constants ε and δ, our sample complexity of O (log(|H|) + n log(n)) appears to violate the lower bound
of Ω (log(|H|) log(n) + n log(log(|H|))) due to Chen, Zhang, and Zhou [13]. This discrepancy is due to a small
error in the proof of that lower bound, which we have verified in private communications with the authors.

Recall that we can convert any randomized solution to a deterministic one by taking a majority vote
(Fact 2.2). Our sample complexity bound on finding randomized solutions therefore also implies a sample
complexity bound on finding deterministic improper solutions to collaborative learning problems.

Corollary 5.2 (Theorem 5.1 and Fact 2.2). Consider a collaborative learning problem (H,D) on a set of
binary classifiers. There is an algorithm with a sample complexity of O

(
ε−2 (log(|H|) + n log(n/δ))

)
that,

with probability 1− δ, returns a deterministic improper solution hMaj ∈ YX such that maxD∈D RD(hMaj) ≤
2OPT + ε.

In the next subsection, we will show that this sample complexity upper bound is tight up to double-log
factors and exactly tight in the regime where n ∈ O(log(|H|).

5.2 Sample Complexity Lower Bound
We now provide matching lower bounds on the sample complexity of agnostic collaborative learning. We
note that these lower bounds hold for any collaborative learning algorithm that returns ε-optimal solutions,
regardless of whether those algorithms perform sampling on-demand and regardless of whether the algorithms
return randomized or deterministic and proper or improper solutions. We also note that the data distributions
we construct to establish these lower bounds are not exotic. For example, to prove these lower bounds, we
construct a set of data distributions where all data distributions share the exact same feature distribution
and all but one distribution share the exact same label distribution.

Theorem 5.3 states our lower bound. In this theorem, we refer to an algorithm as an (ε, δ)-collaborative
learning algorithm if, for every collaborative learning problem (H,D), the algorithm returns an ε-optimal
solution h, i.e., satisfying Equation 2, with probability at least 1 − δ. We say that a learning algorithm
Q is an (ε, δ)-optimal collaborative learning algorithm for a specific set of collaborative learning problems
V := {(Hi,Di)}i if, given any problem (Hi,Di) ∈ V, with probability at least 1 − δ the output of Q is an
ε-optimal solution.

Theorem 5.3. Take any n, d ∈ Z+, ε, δ ∈ (0, 1/8), and (ε, δ)-collaborative learning algorithm Q. There
exists a collaborative learning problem (H,D) with |D| = n and |H| = 2d, on which Q takes at least
Ω
(

1
ε2 (d+ n log(min{n, d}/δ))

)
samples. When n ≤ d, this lower bound becomes Ω

(
1
ε2 (d+ n log(n/δ))

)
.

Before we proceed to a proof of this theorem, we first define a notion of expected sample complexity. Take
any collaborative learning problem V = (H,D); we use NQ(V ) to denote the expected sample complexity
of a collaborative learning algorithm Q on the problem V , where the expectation is taken both over the
randomness of data samples and the algorithm’s randomness. Similarly, given a probability distribution
P over a set of collaborative learning problems V := {(Hi,Di)}i, we define expected sample complexity as
NQ(P) = EV∼P [NQ(V )].
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We now prove two lemmas, Lemma 5.4 and Lemma 5.5, that directly imply Theorem 5.3. Lemma 5.4 is a
standard lower bound on the sample complexity of agnostic PAC learning, and provides the unsurprising
Ω( d

ε2 ) lower bound summand. Lemma 5.5 is more involved and provides the Ω(n log(min{n,d}/δ)
ε2 ) summand in

our lower bound.

Lemma 5.4. Take any n, d ∈ Z+, ε, δ ∈ (0, 1/8), and collaborative learning algorithm Q. There exists a set
of collaborative learning problems V on which, if Q is (ε, δ)-optimal, Q takes at least Ω

(
log|H|

ε2

)
samples and

where, for every (H,D) ∈ V, |D| = n and |H| = 2d.

Proof. This claim follows directly from the standard lower bound on sample complexity of agnostic probably-
approximately-correct (PAC) learning [54], since we can reduce any single-distribution learning problem to
multi-distribution learning problem by defining multiple copies of a data distribution. We defer interested
readers to Ehrenfeucht et al. [20].

Lemma 5.5. Take any n, d ∈ Z+, ε, δ ∈ (0, 1/8), and (ε, δ)-collaborative learning algorithm Q. There exists
a set of collaborative learning problems V on which Q takes at least Ω

(
1
ε2 (n log(k/δ))

)
samples and where,

for every (H,D) ∈ V, |D| = n and |H| = 2d with k := min {n, d}.

Proof. We prove this lower bound constructively by defining multiple sets of collaborative learning instances:
{Vwη,w}w,η∈N. At a high-level, the proof of this lower bound will follow from proving that multi-distribution
learning allows one to solve multiple single-distribution learning problems simultaneously with constant
probability using a boosting-like algorithm.

We now detail our fairly technical construction of these collaborative learning instances. For every set of
instances Vu,w, we require all instances (H,D) ∈ Vu,w to share a feature space X = {1, . . . , w}, label space
Y = {±1}, hypothesis class H = YX , and 0/1 loss ℓ. For every x ∈ [w] and y ∈ {±1}, we define distributions
Dx and D′

x as having the probability mass functions PrDx (x, y) =
1
2 − 2yε and PrD′

x
(x, y) = 1

2 + 4yε. Let
D− =

⋃
x∈[w]{Dx}η be an ordered list of distributions, and for every x ∈ [w] and i ∈ [η], define Dx,i to be a

set of distributions identical to D− except with the ith copy of distribution Dx replaced with distribution D′
x.

Let Pηw,w be a distribution over collaborative learning instances that, with probability 1
2 , returns (H,D−)

and for every i ∈ [η], x∗ ∈ [w], with probability 1
2wη returns (H,Dx∗,i). Observe that Pηw,w is a distribution

over collaborative learning problems where |H| = 2w and |D| = u. The following claims characterize sample
complexity lower bounds on Pu,w.

Claim 5.1. Consider any ε ∈ (0, 1/2), δ ∈ (0, 1), and collaborative learning algorithm Q that is (ε, δ)-optimal
for Vη,1. The expected sample complexity of Q is at least η

256ε2 log(1/2δ).

Claim 5.2. Consider any ε ∈ (0, 1/2) and δ ∈ (0, 1). Suppose there exists a collaborative learning algorithm
Q that is (ε, δ)-optimal for Vηw,w and has an expected sample complexity of N under Pηw,w. Then there
exists an (ε, 8δ

7w )-learning algorithm Q′ for Vη,1 under Pη,1 with an expected sample complexity on Pη,1 of
8
7wN .

Since our desired lower bound is weakly monotonic in n, d, we fix the smallest choice of η, d ∈ Z+ and
ε, δ ∈ (0, 1/8) such that n = η · d. Combining claims 5.1 and 5.2, we see that any (ε, δ) collaborative learning
algorithm Q for Vn,d has an expected sample complexity on Pn,d of at least N ≥ 7n

2048ε2 log
(

7d
16δ

)
. By the

probabilistic method, for at least some collaborative learning problem in the set Vn,d, our learning algorithm
Q must have a sample complexity of Ω

(
7n

2048ε2 log
(

7d
16δ

))
.

Proof of Claim 5.1. Consider η two-sided coins. Under a H0 hypothesis, all coins are biased towards tails with
probability 1/2 + 2ε. Under a Hi hypothesis, the ith coin is biased towards heads with probability 1/2 + 4ε.
Let Pr be a probability distribution on H ∈ {Hi}ηi=0 with Pr(H0) = 1/2 and Pr(H1) = · · · = Pr(Hη) =

1
2η .

Given an (ε, δ)-algorithm Q for Vη,1 with an expected sample complexity of N (under Pη,1), we can construct
a coin algorithm Q′ with an expected sample complexity of N (under Pr) and that, under any hypothesis,
with probability at least 1− δ, can identify whether H0 is false.

To see this, have Q′ run Q by simulating draws from the ith distribution by flipping the ith coin. If all coins
are biased towards tails with probability 1/2 + 2ε, any ε-error hypothesis h must satisfy Pr(h(1) = +) > 1/2.
Conversely, if one coin is biased towards heads, any ε-error hypothesis h must satisfy Pr(h(1) = +) < 1/2.
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Suppose Q′, conditioned on H0, correctly predicts H0 with probability at least 1− δ. Then, suppose Q′,
under H0, takes no more than Ti flips from the ith coin. Let pi,j1:j2 be a probability distribution over {0, 1}
corresponding to the outcomes of the j1st to j2nd coin toss by Q′ under Hi. Let p∗j be a uniform distribution
over {0, 1}j . Since pi,j:j and p∗j are Bernoulli distributions with a parameter within 4ε of 1/2, for ε < 1/2,
KL(pi,j:j , p∗1) < 128ε2 [60]. Moreover, KL(pi,1:j , p∗j ) < 128jε2 by tensorization and TV(pi,1:j , p

∗
j ) ≤ 8ε

√
j by

Pinsker’s inequality. Let E be the set of outcomes of Ti flips under which Q′ predicts H0. By correctness under
H0, we have that PrH0(E) ≥ 1− δ. Thus, total variation distance implies 1− δ − 8ε

√
j < PrHi(E). Since

PrHi
(E) < δ, we have that 1

128ε2 (1− 2δ)
2
< Ti. Thus, if Q′ is δ accurate under all hypotheses, under H0,

Q′ must take at least η
128ε2 (1− 2δ)

2
< η

128ε2 log(1/2δ) samples from each distribution. Thus, the expected
sample complexity of Q′—and similarly that of Q under Pη,1—must be at least η

256ε2 log(1/2δ).

Proof of Claim 5.2. This claim is similar to the lower bounds of Blum et al. [9] and Karp and Kleinberg
[30]. We construct Q′ as follows. Define the shorthand Ij := [(j − 1)η + 1, jη]. Consider any problem
V ′ = (H,D) ∈ Vη,1.

1. Q′ draws an imaginary problem (H,D′) ∈ Vηw,w and chooses an index i ∈ [w] uniformly at random.

2. Q′ simulates algorithm Q on (H,D′): when Q tries to sample a datapoint from distribution D′
j where

j /∈ Ii, return a sample from D′
j ; when j ∈ Ii, return a sampled datapoint from Dj−(i−1)η.

3. When Q terminates and returns a classifier h, Q′ checks whether, for every j ̸= i: maxr∈Ij RDr
(h) < 1

2 .
If this condition is satisfied, Q′ returns h(1) = h(i). If not, we repeat from Step 1. We denote the
number of total iterations by T .

Consider the probability pi that, in the third step, for every j ≠ i we have maxr∈Ij RDr
(h) < 1

2 but
maxr∈Ii RDr (h) ≥ 1

2 . Let Et denote the event that Q′ returns an at least ε-error hypothesis after t iterations
of our procedure. Noting that Et can only occur if Q failed all t − 1 iterations before and at the tth
iteration, Step 3 fails to catch the bad hypothesis for Di. By assumption, δ ≥

∑w
i=1 pi. By symmetry of our

construction V and recalling δ < 1/8:
∑∞

t=1 Pr (Et) ≤
∑∞

t=1 δ
t−1 1

w

∑w
i=1 pi ≤

∑∞
t=1 δ

t/w ≤ 8δ
7w . Thus, Q′ is

an (ε, 8δ
7w )-algorithm for Pη,1.

We now bound the sample complexity of Q′. Let NQ′(t) denote the number of samples that Q′ takes from
V ′ on the tth iteration. Note that NQ′(1), NQ′(2), . . . are i.i.d. In addition, by the symmetry of V and linearity
of expectation, EV ′∈Pη,1 [NQ′(t)] = m/w. Thus, EV ′

[∑T
t=1 NQ′(t)

]
= EV ′ [T ]EV ′ [NQ′(1)] = EV ′ [T ]m/w.

We can upper bound T by observing that our procedure only repeats if Q fails: EV ′ [T ] =
∑∞

t=1 Pr(T ≥ t) ≤∑∞
t=0 δ

t ≤ 1
1−δ ≤ 8

7 . Thus, Q′ has an expected sample complexity of at most 8m
7w .

6 Group DRO and Agnostic Federated Learning
In this section, we present our main result on the sample complexity of the group distributionally robust
optimization framework of Sagawa et al. [50] and the agnostic federated learning framework of Mohri et al. [39].
We show that the worst-case sample complexity of group DRO, and equivalently agnostic federated learning,
is greater than that of online convex optimization by only a constant factor and an additive O(n log(n/δ)/ε2)
samples. This sample complexity upper bound is tight for a difficult class of problems—a class that coincides
with collaborative learning. Since the settings of group DRO and agnostic federated learning are generally
equivalent, we state the results explicitly for group DRO, with the understanding that the same results apply
to agnostic federated learning.

Setup. Group distributionally robust optimization is typically studied in a convex optimization setting
where the hypothesis class is parameterized by a convex compact parameter class and the loss function is
smooth and convex in the parameterization. As noted previously, this means that the group DRO setting
coincides with general setting of multi-distribution learning with a single smooth convex loss. Moreover,
group DRO is usually formulated in a setting where the parameter space admits mirror descent approaches.

We first present the definitions which are necessary for describing mirror descent guarantees. A distance-
generating function on a parameter space Θ is a continuous and strongly convex, modulus 1, function
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ω : Θ → R, where there exists a non-empty subset of the parameter space Θo ⊂ Θ where the subdifferential
∂ω is non-empty and ∂ω admits a continuous selection on Θo. The center of Θ with respect to ω is denoted
as θc := argminθ∈Θo ω(θ). The Prox function (Bregman divergence) V : Θo × Z → R+ associated with a
distance-generating function ω : Z → R is defined as V (w, u) := ω(u) − ω(w) − ⟨ω′(w), u− w⟩. Bregman
radius, which is a measure for how difficult it is to learn a parameter class, is then defined as follows.

Definition 6.1. Given a convex set Θ with a distance-generating function ω, the Bregman radius is defined
as DΘ := maxu∈Θ V (θc, u) where θc is the center of Θ.

A bounded Bregman radius allows one to apply online mirror descent [6] as an online learning algorithm,
with a regret guarantee of γT (QΘ) ≤ DΘ. In group DRO, DΘ is typically assumed to be small.

Sample complexity upper bound. Theorem 6.1 states our sample complexity bound for group distribu-
tionally robust optimization. This sample complexity bound is a direct implication of our multi-distribution
learning sample complexity bound. This theorem establishes the first generalization bound for the problem of
group distributionally robust optimization [50] and improves, by a factor of n, existing sample complexity
bounds for agnostic federated learning [39]. This significant improvement in sample complexity over Mohri
et al. [39] is attained by sampling data on-demand, whereas Mohri et al. [39] work with a distribution over
groups/clients that is fixed a priori.

Theorem 6.1. Given a set of data distributions D = {D1, . . . , Dn}, a hypothesis class H with a Bregman
radius of DΘ and a diameter of R, and a 1-smooth loss ℓ, consider the group distributionally robust optimization
problem (D, {ℓ} ,H). Consider the output θ ∈ Θ arising from applying Theorem 4.1’s algorithm, choosing the
online learning algorithm Q to be online mirror descent. With probability 1− δ, h is an ε-optimal solution
(see (3)) and the sample complexity is O

(
ε−2 (DΘ + n log(n/δ) +R log(1/δ))

)
.

Proof. This claim follows directly by Theorem 4.1 since group distributionally robust optimization is equivalent
to multi-distribution learning on a single smooth convex loss. Recall that, for a convex parameter space with
Bregman radius DΘ for a distance-generating function ω, running the online mirror descent algorithm with
respect to ω guarantees a regret bound of γT (QΘ) ≤ DΘ [6]. We directly plug this online convex optimization
regret bound into Theorem 4.1.

This sample complexity bound for finding a group DRO solution with low expected loss also trivially implies
a bound on the number of mirror descent iterations that are necessary to find a group DRO or agnostic
federated learning solution with low empirical training error. This question was considered by Sagawa et al.
[50] who presented an iteration complexity bound that we improve upon by a factor of n.

Corollary 6.2 (Theorem 6.1). Consider a group distributionally robust optimization problem (D, {ℓ} ,H).
For every D ∈ D, let BD ∼ D be a non-empty batch of i.i.d. datapoints and D′ be the empirical distribution
of BD. There is an algorithm that only requires O

(
ε−2 (DΘ + n log(n/δ) +R log(1/δ))

)
iterations of mirror

descent steps to output, with probability 1− δ, an empirically ε-optimal solution.

Sample complexity lower bound. There exists a class of difficult group distributionally robust opti-
mization problems for which our stated sample complexity upper bounds are tight. This is because we can
reduce any collaborative learning problem to multi-distribution learning with a single smooth convex loss, and
equivalently, group DRO. Thus, our sample complexity lower bound for collaborative learning directly implies
a lower bound for group DRO for a class of difficult cases. We formally state this corollary of Theorem 5.3
below.

Corollary 6.3. Take any n,m ∈ N and ε, δ ∈ (0, 1/8). There exists a finite set V of group distributionally
robust optimization problems with 1-smooth losses and parameter spaces of unit diameter and finite Bregman
radius DΘ, where every (ε, δ)-algorithm Q has a sample complexity in Ω

(
DΘ+n log(min{n,DΘ}/δ)

ε2

)
.
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7 Extensions to Infinite Classes of Binary Classifiers
In this section, we study the sample complexity of multi-distribution learning when the hypothesis class
is infinite but combinatorially bounded. In particular, we will study multi-distribution learning problems
involving binary classification tasks and hypothesis classes of finite VC dimension or finite Littlestone
dimension [33]. For succinctness, we state all results in this section for the collaborative learning setting, but
note that these results extend readily to the general multi-distribution learning setting.

Littlestone dimension. The Littlestone dimension of a set of binary classifiers quantifies the set’s online
learnability [33]. Formally, consider a supervised learning setting with domain X and a set of binary classifiers
H. Consider a full binary tree of depth d, such that each node in the tree is labeled by a feature x ∈ X . We
say the tree is shattered by H if for every set of labels {yi}di=1 ∈ {±1}d, the root-to-leaf path x1, . . . , xd that
is defined by starting at the root and moving to the left child if yi = +1 and right if yi = −1, there exists a
classifier h ∈ H such that h(xi) = yi for all i ∈ [d]—that is, h agrees with the labels we used to reach nodes
in the path. In other words, a tree is shattered if every path in the tree is labeled by some hypothesis h ∈ H.
We say that the Littlestone dimension of the classifiers H is d if d is the maximal depth of a tree that is
shattered by H.

It is not hard to see that Littlestone dimension upper bounds VC dimension and lower bounds log-
cardinality log(|H|). For binary classifier multi-distribution learning problems, we can strengthen our
collaborative learning sample complexity upper bound of Theorem 5.1 to be stated in terms of the Littlestone
dimension of a hypothesis class LD (H) rather than log(|H|). This is because there exists an online learning
algorithm that guarantees a regret bound of γT (Q∆(H)) ∈ O(LD(H)) that we can have the learner play
instead of an algorithm like Hedge.

Theorem 7.1 (Littlestone Dimension Variant of Theorem 5.1). Given a set of data distributions D =

{D1, . . . , Dn}, a hypothesis class of binary classifiers H ∈ {0, 1}X , and a [0, 1]-bounded loss ℓ, consider the
collaborative learning problem (H,D). Consider the output h ∈ ∆(H) of applying Theorem 4.1’s algorithm
to the multi-distribution learning problem (D, {ℓ} ,∆(H)) where the online learning algorithm Q∆(H) is the
agnostic Standard-Optimal-Algorithm of Alon et al. [2]. With probability 1− δ, h is an ε-optimal solution
(see (2)) to (H,D) and the sample complexity is O

(
ε−2 (LD (H) + n log(n/δ))

)
.

Proof. By Fact 2.1, we can reduce the collaborative learning problem (H,D) to solving the multi-distribution
learning problem (D, {ℓ} ,∆(H)) The agnostic SOA algorithm of Alon et al. [2] guarantees a regret bound of
γT (Q∆(H)) = LD(H). Our claim therefore follows by Theorem 4.1.

We remark that a similar sample complexity bound can be achieved using the original Standard Optimal
Algorithm (SOA) of Littlestone [33] instead of the implicit algorithm of Alon et al. [2], as SOA guarantees a
regret bound of γT (Q∆(H)) ∈ O

(√
LD(H)T log(T )

)
.

VC dimension. It is also nature to ask for the sample complexity of multi-distribution learning in terms of
VC dimension VC(H), which characterizes the sample complexity of learning a single data distribution. For
example, Blum et al. [9], Nguyen and Zakynthinou [42], Chen et al. [13] provided upper bounds for binary
classification multi-distribution learning that are identical to their upper bounds in Table 1 but replacing
log(|H|) with VC(H). We now show a similar result to Theorem 5.1 also holds with dependence on the VC
dimension of H only when additional mild assumptions hold. In particular, one can run Algorithm 2 on
a hypothesis class H′ that is known to be an ε-net of H with respect to each distribution in D. Such an
ε-net of size (n/ε)O(VC(H)) necessarily exists (see, e.g., [3]). For example, we can project H onto the union of
datapoints sampled from each distribution D ∈ D. When such a H′ is known in advance, we may directly
run Algorithm 2 with H′.

Corollary 7.2. Given a set of data distributions D = {D1, . . . , Dn}, a hypothesis class of binary classifiers
H ∈ {0, 1}X of VC dimension d, and a [0, 1]-bounded loss ℓ, consider the collaborative learning problem
(H,D). Suppose we are further given a set of classifiers of size poly

(
(n/ε)d, ε, d, n

)
that is an ε-net of H for

each distribution D ∈ D. There is an algorithm that, with probability 1− δ, returns an ε-optimal solution (see
(2)) to (H,D) with a sample complexity of O

(
ε−2 (d log(dn/ε) + n log(n/δ))

)
.
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It is not strictly necessary to know an ε-net in advance. Instead, one can compute a net from samples or
from other information about distributions in D. There a range of assumptions that allow us to compute
such an ε-net from samples, without incurring a significant increase in sample complexity. For example, when
ε is sufficiently small, specifically ε ∈ O (1/n) (Assumption 1 ), taking an ε-net only increases the sample
complexity bound by constant factors versus knowing an ε-net in advance. Additional examples include:

• Assumption 2 : we know the marginal distribution for all D ∈ D;

• Assumption 3 : we have access to n marginal distributions P1, . . . , Pn such that for all x ∈ X , Di(A) ≤
pi(A)poly(1/ε, d(H), n) for all A ⊆ X , where pi and Di are the densities of Pi and Di, respectively.

These latter two assumptions allow one to construct ε-nets of small size for free.

Theorem 7.3. Given a set of data distributions D = {D1, . . . , Dn}, a hypothesis class of binary classifiers
H ∈ {0, 1}X of VC dimension d, and a [0, 1]-bounded loss ℓ, consider the collaborative learning problem
(H,D). If any of Assumptions 1, 2 or 3 is met, there is an algorithm that, with probability 1− δ, returns an
ε-optimal solution (see (2)) to (H,D) with a sample complexity of O

(
ε−2 (d log(dn/ε) + n log(n/δ))

)
.

Proof. For a data distribution D, we will use DX to denote the marginal distribution of D. We also use the
shorthand d∞(P ||Q) := supx∈XQ

P (x)
Q(x) , where dα(P ||Q) := 2Dα(P ||Q) can be understood as the power of the

Renyi divergence Dα(P ||Q). We first recall a standard fact about covering with projections.

Lemma 7.4 (Corollary 3.7 in Haussler and Welzl [25]). Let F be a function class consisting of functions
from X to [0, 1] and let P be a probability measure on X . Given N ≥ 8d

ε log 8d
ε + 4

ε log
2
δ independent samples

x from P, with probability at least 1 − δ, the projection of F on x constitutes an ε-net. That is, for any
f1, f2 ∈ F where Prx∼P(f1(x) ̸= f2(x)) ≥ ε, ∥f1(x)− f2(x)∥x > 0.

The following corollaries of Theorem 5.1 directly imply Theorem 7.3.

Corollary 7.5 (Assumption 1). For ε ∈ O (1/n), there is an algorithm that, with probability 1− δ, returns
an ε-optimal solution h ∈ ∆(H) using a number of samples that is O

(
d log(dn/ε)+n log(n/δ)

ε2

)
.

Proof. By Lemma 7.4, sampling O
(
nd
ε log(dε ) +

n
ε log(nε )

)
datapoints provides a covering of H is that is

simultaneously an ε-net for every D ∈ D with probability at least 1−δ. Moreover, by the Sauer-Shelah lemma,

this net is of size O

((
log(dn/ε)+n log(n/δ)

ε2

)d)
. The claim then follows from Corollary 7.2, noting that since

ε ∈ O (1/n), we only needed to sample an additional O
(

d
ε2 log(

d
ε ) +

n
ε log(nε )

)
⊂ O

(
nd
ε log(dε ) +

n
ε log(nε )

)
datapoints to form the cover.

Corollary 7.6 (Assumption 2). We say an algorithm has weak unlabeled access if the algorithm can access,
for each D ∈ D, a marginal distribution D′

X such that D∞(D′
X ||DX ) ∈ poly(1/ε, d, n), with probability 1− δ.

There is an algorithm that, given weak access, with probability 1− δ, returns an ε-optimal solution h ∈ ∆(H)

using a number of samples that is O
(

d log(dn/ε)+n log(n/δ)
ε2

)
.

Proof. Observe that when D∞(D′
X ||DX ) < γ, D′

X can be written as a mixture over DX with probability
at least 1

γ and some other distribution D̃X with probability at most 1 − 1
γ . Once again invoking uniform

convergence, we observe that sampling Θ
(
D∞(D′

X ||DX )d log(d/ε)+log(1/δ)
ε2

)
i.i.d. samples from distribution

D′
X , with probability at least 1− δ, yields an ε-covering on D. By the Sauer-Shelah lemma, the resulting

covering H′
D is of size O

(
(poly(1/ε, d, n))d

)
. Repeating this procedure for each D ∈ D, with probability

at least 1 − nδ, we have an ε-covering H′ of D of size |H′| ∈ O
(
n(poly(1/ε, d, n))d

)
. We can then appeal

directly to Theorem 5.1 for a sample complexity bound on learning (H′,D).

Corollary 7.7 (Assumption 3). There is an algorithm that, given access to the marginal distribution DX of
every D ∈ D, with probability 1− δ, returns an ε-optimal solution h ∈ ∆(H) using a number of samples that
is O

(
d log(dn/ε)+n log(n/δ)

ε2

)
.
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Proof. By uniform convergence, taking Θ
(

d log(d/ε)+log(1/δ)
ε2

)
i.i.d. samples from distribution DX for each

D ∈ D, with probability at least 1− δ, yields an ε-covering on every D ∈ D. By the Sauer-Shelah lemma, the
resulting covering H′

D is of size O
(
(nε−2(log(d/ε) + 1

d log(1/δ)))
d
)
. We then appeal to Corollary 7.2.

One question left open by these results is whether, for agnostic collaborative learning, it is possible to
achieve sample complexity rates of O

(
ε−2 (log(n)VC(H) + n log(n/δ))

)
without any additional assumptions

or a priori knowledge of an ε-net. It also remains an open question whether the log(n) factor in the
log(n)VC(H)/ε2 term is necessary for VC classes, as Theorem 5.1 proves that, for finite/online-learnable
classes with sample complexities expressed in terms of log(|H|) or Littlestone dimension LD(H), no such
log(n) factor is necessary. We refer interested readers to Awasthi et al. [4] for a complete discussion of these
open problems.

8 Empirical Analysis of On-Demand Sampling for Group DRO
This section describes experiments where we adapt our on-demand sampling-based multi-distribution learning
algorithm for deep learning applications. In particular, we compare our algorithm against the de facto
standard multi-distribution learning algorithm for deep learning, Group DRO (GDRO) [50]. As GDRO is
designed for use with offline-collected datasets, to provide a meaningful comparison, we modify our algorithm
to work on offline datasets (i.e., with no on-demand sample access).

Worst-Group Accuracy Gap in Avg. vs. Worst-Group Acc.

ERM GDRO R-MDL ERM GDRO R-MDL

St
an

da
rd

R
eg

.

Waterbirds 60.0 (1.9) 76.9 (1.7) 86.4 (1.4) 37.3 (1.9) 20.5 (1.7) 8.1 (1.4)

CelebA 41.1 (3.7) 41.7 (3.7) 88.9 (2.3) 53.7 (3.7) 53 (3.7) 3.4 (2.3)

MultiNLI 66.3 (1.6) 66.6 (1.6) 70.3 (1.5) 16.2 (1.6) 15.6 (1.6) 4.5 (1.5)

St
ro

ng
R

eg
.

Waterbirds 21.3 (1.6) 84.6 (1.4) 89.4 (1.2) 74.4 (1.6) 12 (1.4) 0.4 (1.3)

CelebA 37.8 (3.6) 86.7 (2.5) 88.8 (2.3) 58 (3.6) 6.8 (2.5) 1.2 (2.3)

E
ar

ly
St

op Waterbirds 6.7 (1.0) 85.8 (1.4) 87.1 (1.3) 87.1 (1.0) 7.4 (1.4) 5.6 (1.3)

CelebA 25.0 (3.2) 88.3 (2.4) 90.6 (2.2) 69.6 (3.2) 3.5 (2.4) 0.7 (2.2)

MultiNLI 66.0 (1.6) 77.7 (1.4) 43.1 (1.7) 16.8 (1.6) 3.7 (1.4) 18.3 (1.7)

Table 2: Worst-group accuracy (our primary performance metric) and the gap between worst-group accuracy and
average accuracy, of empirical risk minimization (ERM), Group DRO (GDRO), and our R-MDL algorithm in three
experiment settings—standard hyperparameters (Standard Reg.), inflated weight decay regularization (Strong Reg.),
and early stopping (Early Stop)—and on three datasets—Waterbirds, CelebA, and MultiNLI. Figures are percentages
evaluated on the test split of each dataset, with standard deviation in parentheses. R-MDL consistently outperforms
GDRO and performs reliably with or without strong regularization.

Resampling Multi-Distribution Learning (R-MDL). To be more suitable for deep learning applications,
we instantiate Algorithm 2 by choosing a minibatch gradient descent algorithm as the minimizing player’s
algorithm (QΘ) and a naive uniform-sampling bandit algorithm as the maximizing player’s algorithm (Q∆(D)).
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We can further adapt our algorithm to offline datasets by simulating on-demand sampling on the empirical
distributions of datasets. This modified algorithm, R-MDL, is described in full in Algorithm 3.

Note that, in contrast, the original group DRO algorithm of Sagawa et al. [50] is also a minibatch gradient
descent algorithm but samples minibatches uniformly from all distributions and weights datapoints via a
no-regret algorithm that provides importance weights. Though effective, this method is brittle and requires
tricks like unconventionally strong regularization [50]. Our theory of on-demand sampling suggests that
R-MDL should mollify this brittleness, as it replaces GDRO’s upweighting of low-accuracy distributions with
upsampling of low-accuracy distributions. Interestingly, the advantage of resampling over reweighting has
been previously observed when training neural networks on a dataset with fixed importance weights [51].

Experiment Setting In Table 2, we replicate the Group DRO experiments of Sagawa et al. [50] and
compare the standard GDRO algorithm with our R-MDL algorithm (Algorithm 3). We fine-tune Resnet-50
models (convolutional neural networks) [26] and BERT models (transformer-based network) [17] on the image
classification datasets Waterbirds [50, 56] and CelebA [34] and the natural language dataset MultiNLI [57]
respectively. We train these models in 3 settings: with standard hyperpameters, under strong weight decay
(ℓ-2) regularization, or under early stopping.

R-MDL consistently outperforms GDRO and ERM. In every dataset and in almost every setting,
R-MDL significantly outperforms GDRO and ERM in worst-group accuracy. In addition, whereas GDRO
and ERM have large gaps between worst-group accuracy and average accuracy, R-MDL has almost matching
worst-group and average accuracies. This indicates that R-MDL is more effective at prioritizing learning on
difficult groups.

R-MDL is robust to regularization strength. R-MDL retains high worst-group accuracy even without
strong regularization. These results challenge the observation of Sagawa et al. [50] that strong regularization
is critical for the performance of Group DRO methods. This suggests that the brittleness of GDRO is due to
the reweighting rendering the adversary too weak. In contrast, R-MDL provides a robust multi-distribution
learning method with significantly less hyperparameter sensitivity.

9 Conclusions
While learning from a single data distribution is a fundamental abstraction of data-driven pattern recognition,
data-driven decision-making calls for a new perspective that captures learning problems involving multiple
stakeholders and data sources. This work proposes multi-distribution learning as a unifying theoretical
framework, bringing together a number of widely studied problem formulations such as group distributionally
robust optimization and collaborative PAC learning under a single umbrella. This unifying perspective distills
the challenges of these various learning problems to a fundamental question about the sample complexity
of stochastic games. We answered this fundamental question by providing optimal rates for a broad class
of problems including convex and Littlestone hypothesis classes, highlighting the importance of on-demand
sampling for decoupling the complexity of learning and obtaining robustness. We believe these findings
underscore a broader takeaway that adaptive data collection is fundamental for scalable learning outside the
single-distribution paradigm of classical pattern recognition.
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Algorithm 3 Resampling-based Multi-Distribution Learning (R-MDL)
Input: Parameter space Θ, iterations T , batch size B and adversary batch size B′, and training and
validation datasets Xtr,i and Xval,i for i ∈ [n];
Initialize: θ(0) ∈ Θ and w(0) = [1/n]n;
for t = 1, 2, . . . , T do

For i ∈ [n], randomly sample (with replacement) B′ datapoints x
(t−1)
val,i,1, . . . , x

(t−1)
val,i,B′ from Xval,i;

Let w(t) = Hedge∆n

({
w 7→ 1− 1

B′

∑B′

j=1

∑n
i=1 wiℓ(hθ(τ) , x

(τ)
val,i,j)

}
τ∈[t−1]

)
, see Equation 4;

Randomly sample (with replacement) the datapoints x
(t−1)
tr,1 , . . . , x

(t−1)
tr,B from

∑n
i=1 w

(t−1)
i Di;

Run a gradient descent update(s) θ(t) = GradientDescentΘ

(
θ 7→ 1

B

∑B
j=1 ℓ(hθ, x

(τ)
tr,j)

)
τ∈[t−1]

;

end for
Return: 1

T

∑T
t=1 θ

(t);

A Experiment Details

R-MDL Algorithm. The R-MDL algorithm is defined in full in Algorithm 3. It instantiates (a batched
version of) Algorithm 2 choosing QΘ to be online gradient descent and Q∆n

to be a naive bandit-to-full-
information reduction algorithm that implements Exp3 but observes cost functions uniformly at random
and re-uses cost function observations between rounds. This algorithm is an example of instantiating
our general multi-distribution learning framework with more practical choices of learning algorithms. An
example implementation, along with experiment replications, is provided in the Github repository er-
iczhao28/multidistributionlearning.

Additional Observation: R-MDL converges faster than ERM or GDRO. The R-MDL methods in
Table 2 used a fraction of the training epochs that their GDRO counterparts used. The ratio of R-MDL to
GDRO training epochs is 1:3, 2:5, 1:2 on the Waterbirds, CelebA, and MultiNLI datasets respectively. This
fast convergence rate is predicted by our theory, particularly Corollary 6.2. In our Figure 1, we also replicate
the Figure 2 of Sagawa et al. [50], appending our additional results on R-MDL. We again see a trend of faster
test error convergence (solid lines) and more uniform per-group risks by the R-MDL algorithm.

Datasets. Our experiments were performed on three datasets: Multi-NLI, CelebA, and Waterbirds [50].
We use identical preprocessing settings and dataset splits as Sagawa et al. [50]. Our experiments, unless
otherwise specified, replicate the exact hyperparameter settings adopted by Sagawa et al. [50] for their Table
2 experiments. This includes the choice of random seeds, batch sizes, learning rates, learning schedules, and
regularization. We defer readers to Sagawa et al. [50] or to our public source code for replication details.

The Multi-NLI dataset [57] concerns the following natural language inference task: determine if one
statement is entailed by, neutral with, or contradicts a given statement. This dataset is challenging because
traditional ERM models are prone to spuriously correlating “contradiction” labels with the existence of negation
words. The dataset is divided into 6 distributions: the Cartesian product of the label space (entailment,
neutral, contradiction) and an indicator of whether the sentence contains a negation word. The label space
annotations were annotated by [57] while negation labels were annotated by Sagawa et al. [50]. There are
206,175 datapoints available in the Multi-NLI dataset; the smallest distribution (entailment + negation) is
represented by only 1,521 datapoints. We use a randomly shuffled 50-20-30 training-validation-testing split.

The CelebA dataset is a dataset of celebrity face images and a label space of potential physical
attributes [34]. This dataset is challenging because traditional ERM models are prone to spuriously correlating
attribute labels with demographic information such as race and gender. Following Sagawa et al. [50], we
divide the dataset into 4 distributions: the Cartesian product of the blond vs dark hair attribute label
(“Blond_Hair”) with the “gender” attribute label (“Male”). Note that the authors of Liu et al. [34] limited the
“gender” attribute label to binary options of male and not male. There are 162,770 datapoints available in
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Figure 1: Training (light, dashed) and validation (dark, solid) accuracies for GDRO and R-MDL during
training, plotted on a log scale. Note that R-MDL validation accuracy will be noisier than those of GDRO
as we constrain R-MDL to limited samples (with replacement) from the validation set. In addition, in the
left-most plot, training accuracy for all groups except the blond male group (red) dips to zero due to lack of
data—this is because the blond male group (red) is the most challenging so the adversary eventually stops
sampling from other groups. Under standard regularization, the red-group accuracy drops off in GDRO while
R-MDL maintains a high red-group accuracy by heavily sampling from the red group, as reflected in the
near-perfect red-group training error.

the CelebA dataset; the smallest distribution (blond-hair + male) is represented by only 1,387 datapoints.
We use the official training-testing-validation dataset split.

The Waterbirds dataset is a dataset by Sagawa et al. [50] curated from a larger Caltech-UCSD
Birds-200-2011 (CUB) dataset [56]. It concerns the task of predicting whether a bird is of some waterbird
(sub)species from an image of said bird. This dataset is challenging because traditional ERM models are
prone to spuriously correlating backgrounds with foreground subjects; for instance, a model may often predict
that a bird is a waterbird only because the image of the bird was taken at a beach. The dataset has 4
distributions: the Cartesian product of the waterbird vs not waterbird label with whether the background
of the picture is over water. There are 4,795 datapoints available in the Waterbirds dataset; the smallest
distribution (waterbirds on land) is represented by only 56 examples.

Models. We use two classes of models in our experiments: Resnet-50 [26] and BERT [17]. We use the
torchvision [37] implementation of the convolutional neural network Resnet-50, with a default choice of a
stochastic gradient descent optimizer with momentum 0.9 and batch size 128. Batch normalization is used;
data augmentation and dropout are not used. We use the HuggingFace [58] implementation of the language
model BERT, with a default choice of an Adam optimizer with dropout and batch size 32.

Hyperparameters. In the Standard Regularization experiments, we use a Resnet-50 model with an ℓ-2
regularization parameter of λ = 0.0001 and a fixed learning rate of α = 0.001 for both Waterbirds and CelebA
datasets. The ERM and Group DRO baselines are trained on CelebA for 50 epochs and Waterbirds for 300
epochs. Our multi-distribution learning method is trained on CelebA for only 20 epochs and Waterbirds for
100 epochs; this is due to the faster training error convergence of our method. For the MultiNLI dataset, we
use a BERT model with a linearly decaying learning rate starting at α0 = 0.00002 and no ℓ-2 regularization.
The ERM and Group DRO baselines are trained on Multi-NLI for 20 epochs. Our multi-distribution learning
method is trained on Multi-NLI for only 10 epochs. Our multi-distribution learning method uses adversary
learning rates η+ of 1, 1, 0.2 on Waterbirds, CelebA and MultiNLI respectively.

In the Strong Regularization experiments, we follow similar settings to the Standard Regularization
experiments. The only change is that an ℓ-2 regularization parameter of λ = 1 is used for Waterbirds and
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an ℓ-2 regularization parameter of λ = 0.1 is used for CelebA. Our multi-distribution learning method uses
adversary learning rates η+ of 1 and 0.2 on Waterbirds and CelebA respectively.

In the Early Stopping experiments, we follow similar settings to the Standard Regularization experiments.
The only change is that all CelebA and Waterbird experiments are run for a single epoch. MultiNLI
experiments are run for 3 epochs. Our multi-distribution learning method uses adversary learning rates η+ of
1, 1, 1 on Waterbirds, CelebA and MultiNLI respectively.

The only hyperparameters we use that differ from prior literature are the number of training epochs
and the adversary learning rates of our method (R-MDL). The choice of epoch was not fine-tuned, and was
selected due to our observation of early training error convergence. We selected our adversary learning rate
η- by training our method, on each dataset, for both η- = 1 and η- = 0.2 and selecting the η- yielding the
highest validation-split worst-group accuracy.

Compute. The total amount of compute run for the experiments in this section is approximately 50
GPU hours. A “n1-standard-8” machine was leased from the Cloud computing service Google Cloud; the
“n1-standard-8” machine was equipped with 8 Intel Broadwell chips and 1 NVIDIA Tesla V100 GPU. The
cost of these computing resources totaled approximately USD $2 per hour, with a total cost of approximately
USD $100. All results described in this section, with the exception of existing results cited from other works,
were obtained with experiments on said machine. All experiments were implemented in Python and PyTorch.
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